

3D Plasmonic and Metamaterial Structures

D. B. Burckel

Sandia National Laboratories, ABQ, NM, 87123 MS 1082

Recently we have demonstrated that membrane projection lithography (MPL) is capable of creating 3D structures with sub-micron metallic inclusions for use in metamaterial and plasmonic applications [1-3]. MPL combines conventional semiconductor fabrication methods with directional deposition through a patterned membrane to provide one solution to the long-standing problem of creating truly 3D structures at the micron/submicron scale for use in advanced electromagnetic applications. Transitioning from 2D/planar structures to 3D structures provides several advantages for the EM designer: 1) enabling optimal coupling to both electric and magnetic fields; 2) increased isotropy of the unit cell and hence bulk material; and 3) access to non-planar geometries which enhance the ability to create directional emission/absorption. This paper will present detailed fabrication and characterization data of these materials, emphasizing the unique signatures of the 3D unit cells, and transition from single layer to multi-layer/bulk electromagnetic properties.

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

1. D. B. Burckel, J.R. Wendt, I. Brener and M.B. Sinclair, *Optical Materials Express* **1**, pp. 962-969 (2011).
2. D.B. Burckel, J.R. Wendt, G.A. Ten Eyck, J.C. Ginn, A.R. Ellis, I. Brener, and M.B. Sinclair, *Advanced Materials*, **22**, 5053-5057, (2010).
3. D.B. Burckel, J.R. Wendt, G.A. Ten Eyck, A.R. Ellis, I. Brener, and M.B. Sinclair, *Advanced Materials*, **22**, 3171-3175, (2010).

100 Word Abstract

Recently we have demonstrated that membrane projection lithography (MPL) is capable of creating 3D structures with sub-micron metallic inclusions [1-3]. Transitioning from 2D/planar structures to 3D structures provides several advantages for the EM designer: 1) enabling optimal coupling to both electric and magnetic fields; 2) increased isotropy of the unit cell and hence bulk material; and 3) access to non-planar geometries which enhance the ability to create directional emission/absorption. This paper will present detailed fabrication and characterization data of these materials, emphasizing the unique signatures of the 3D unit cells, and transition from single layer to multi-layer/bulk electromagnetic properties.