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Pulsed laser oxides can create unique colored layers and patterns
that can be used as passive indicators of interference

Short (ns) and ultra-short (fs, ps) pulsed laser light

interacts with the surfaces of various materials to T i _#
create complex color layers and patterns that can o J
be used to identify, mark, and archive materials, TN m b
components, and assemblies. e s tationes tavoratories
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We seek robust adherent markings that are impossible to duplicate and replicate.



Approach

Characterize deformation and fracture of pulsed laser light oxides on
stainless steel substrates

Tasks

Employ pulsed laser light to create complex
color layers and patterns at frequencies of
225, 250, 275, and 350 kHz and scan rates

from 10-175 mm/s

Use optical, atomic force, and scanning

electron microscopy, and x-ray diffraction
characterize oxide structure and composition

Determine mechanical behavior of the ({%ﬂ_
oxide patterns using nanoindentation VA W4 |
and nanoECR techniques.




Patterns are formed by rastering a focused, ns-pulsed laser beam at
constant power across a surface.

 Metal reacts with air to form a color
layer (oxide)
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Surface structure showing pass roughness from raster overlap

SEM and AFM of
90mm/s oxide ridges

AFM and SEM
images of 130mm/s
oxide edge, rising
from steel substrate.




FIB cross sections reveal the complex structure of color layers with
extensive channel cracking and instances of delamination
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The observed colors consistently vary with film thickness.

* Oxide thickness generally increases
with decreasing scan rate (i.e.,

increasing heat input)

» Colors appear when oxide thickness

is in the range of 15-500 nm.

 Large variation in oxide thickness for
a given feature when using a beam

overlap approach

Dark layer is
laser-fabricated
metal oxide
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TEM and EDS reveal the complex structure and composition of color layers.

Oxides formed on SS 304L

« Form large grains

« Exhibit a composition gradient
* Contain Ni, Mn and Fe

» Create porous Cr denuded zone in the
underlying stainless steel
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Work on thin aluminum films showed a strong rate dependence to
indentation and large indentation excursions.
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The behavior was attributed to effects of the surface oxide.

(Hoehn, Bahr, Moody, Gerberich, 1996)



The maximum elastic shear stress occurs near the surface oxide-
aluminum interface indicating that the onset of rate dependence is due to
dislocation emission

Oxide Fracture

The excursions are due to oxide fracture.

(W. W. Gerberich et al., Acta Metall. Mater., 1996)



Indentation of laser oxides is accompanied by excursions in the load
displacement plot.
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Excursions correlate to film cracking.



Modulus and hardness exhibit significant scatter within each oxide
pattern consistent with variable thickness
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The spike in the curves correlates with oxide fracture



Modulus and hardness increase with increasing scan rate

E, GPa
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The depth at fracture decreases with scan rate



E, GPa

Modulus and hardness also increase with increasing frequency
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The difference is most pronounced between the 225 kHz and 350 kHz oxides



Modulus and hardness at fracture suggests that changing frequency

may have a stronger effect than changing scan rate
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Summary of measured mechanical properties indicates that frequency
and scan rates increase modulus and hardness.

Laser Scan Rate Laser Pulse Average Average
(mm/s) Frequency (kHz) Hardness (GPa) | Modulus (GPa)

30 225 9.2+1.0 155+20
47 225 8.5+2.0 150+20
80 225 9.0+4.0 160+15
175 225 9.2+2.0 155+40
10 275 9.0+2.0 158423
50 275 11.3+3.3 165+20
90 275 14.0+2.5 18015
130 275 13.5+5.0 170455
40 350 8.0+1.0 137132
50 350 9.5+1.0 220+50
60 350 14.5+4.0 206+40
70 350 12.3+1.0 208+20

(Test were run at 250 and 275 kHz using the same scan rates. Results were essentially the same.)

(Average values determined from 10 or more indents per specimen)




In general the 350 kHz oxides are stronger than the 225 kHz oxides

Normal probability plot of load at discrete events
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The highest excursion loads are observed on the higher scan rate films.



Conducting indentation shows conductivity increases markedly in
oxides formed at higher scan rates.

load, mN
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Conducting indentation also enables comparison of load/current at
discrete events such as dislocation nucleation or oxide fracture.
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Faster scan rates correlate with higher film conductivity suggesting a
higher defect concentration in oxides formed at higher scan rates
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Oxides with a higher fracture load have lower conductivity consistent

with a lower defect concentration
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Conclusions

Oxide films have an undulating surface topography and a thickness around 400nm.
Channel cracking is prevalent on the surface of all oxides. Some delamination
occurs at the interface of the substrate and oxide.

The oxides are composed mainly of Fe;O, and an Fe-Ni-Cr oxide.

While there is considerable scatter in mechanical property data, the average
modulus of the films is ~160GPa and the average hardness is ~11GPa

Nanoindentation demonstrates that faster laser scan rates lead to tougher films and
that higher laser frequencies result in oxides which fracture at higher loads.

Faster scan rates and lower frequencies correspond with higher conductivity, likely
due to the presence of defects.

Suggest that performance that reliability can be tailored through processing
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