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We are working toward the evaluation of a new ) e
Magnetized Liner Inertial Fusion (MagLIF)* concept

Laboratories

Liner (Al or Be) mimuthal An initial 30 T axial magnetic field is applied
- RN / drive field = Inhibits thermal conduction losses
coldDT / = May help stabilize implosion at late times

:(ai,glnetic = During the ~100 ns implosion, the fuel is heated

field using the Z-Beamlet laser (about 6 kJ in designs)

,-'jli;flaser,l " Preheating to ~300 eV reduces the compression
preneated r&\ needed to obtain fusion temperatures to 23 on Z

) = Preheating reduces the implosion velocity
/ needed to ~100 km/s, allowing us to use thick

~1cm liners that are more robust against instabilities

= ~50-250 kJ energy in fuel; 0.2-1.4% of capacitor bank
= Stagnation pressure required is ~5 Gbar

= 100 kJ yield be possible on Z using DT
Early experiments would use DD fuel

Designs discussed by A. Sefkow CI2.00001 Mon. afternoon!

compressed
axial field

*S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010). S.A. Slutz and R.A. Vesey, Phys. Rev. Lett. (2012).
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Instabilities are a key concern for the MagLIF concept—we () iton
are testing the validity of our liner stability calculations
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» The Magneto-Rayleigh-Taylor
instability degrades the yield as
the aspect ratio is increased
(due to decreased liner pr)
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Radius (um)

« Simulations of AR=6 Be liner

* Include ~60 nm surface roughness
and resolve waves down to ~80 um

« Simulations suggest wavelengths of
200-400 um dominate near stagnation

S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010).



We are trying to address several key liner dynamics -
questions for magnetically driven implosions through ) e
detailed comparisons between modeling & experiments

= Do we have a predictive simulation capability for modeling
cylindrical liner implosions?
= Can we model growth of single-wavelength perturbations?
= Can we model coupling between multi-mode perturbations?
= Can we model growth of unseeded perturbations?
= Can we model fundamentally 3D perturbations (e.g., helical)?
= How far can we push our models? (e.g., down to what convergence?)

= What is the dominant seed for the instabilities we see?
= Electro-thermal instability?
= Surface roughness?

= Today’s poster is focused on the growth of acceleration-
driven instabilities on the outside liner surface. Sandia will
also begin to look at deceleration-driven instabilities on the
inner liner surface in 2014 4
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We are using the Z pulsed-power facility to develop MagLIF @Naﬁma.
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and conduct fundamental liner dynamics experiments
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2-frame monochromatic crystal backlighting is ) e,
being used to image instability growth
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2-frame keV Crystal Imaging

* Monochromatic (~0.5 eV bandpass)
* 6.151 keV (Mn)

* 15 micron resolution

 Large Field of View (4 mm x 10 mm)
* Debris mitigation

=  Original concept

= S.A. Pikuz et al., RSI (1997)
= 1.865 keV backlighter at NRL
Laser Spot = Y. Aglitskiy et al., RSI (1999)

@ \
TR Laser Targets = Single-frame 1.865 keV and 6.151 keV
implemented on Z facility

= D.B. Sinars et al., RSI (2004)
= Two-frame 6.151 keV on Z facility
= G.R.Bennett et al., RSI (2008)

Backlighter €rystals

Radiograph lines of sight £3° from horizontal




Axial distance (mm)

We did controlled experiments as the first critical test of our
understanding of the Magneto-Rayleigh Taylor instability
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Radiographs captured growth of
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D.B. Sinars et al., Phys. Rev. Lett. (2010); D.B. Sinars et al., Phys. Plasmas (2011).



“Unseeded” Be experiments show surprisingly correlated instability
growth at late times that implies a highly-correlated initial seed
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Previous simulations* have attempted to quantify how -
instabilities interact to form additional wavelengths, but L
experimental validation of such models has been Iackmg
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FIG. 12. Two mode evoletion of 2.5 mm and {67 mm modes at (a) 170 ns, (b) 190 ns, () 200 ns and (d) 210 ns.

*Example calculations from M.R. Douglas, C. Deeney, and N.F. Roderick, Physics of Plasmas (1998).



We began studying mode coupling in multi-mode seeded -
perturbation experiments to test our understanding of ) o,
multimode MRT instability growth

¢ = Target parameters were chosen to
complement and compare to previous
single-mode experiments

= |nitial wavelength (400, 550 microns)
and amplitude (20 microns) chosen to
be large enough to be resolved by
radiography at t=0, dominate over
electro-thermal instabilities, and enter
the nonlinear regime quickly.

Tungsten Rod

=  Non-integer wavelengths chosen to
| remove ambiguity of mode coupling

Two-wavelength structure is ' with higher-mode harmonics
machined on outer surface of = On-axis tungsten rod suppresses time
a cylindrical Al 1100 liner integrated self-emission in radiographs




Example simulated radiographs from HYDRA
calculations clearly show the appearance of
additional modes as the implosion progresses
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Experimental radiographs showing the growth of a
two-mode perturbation during a magnetically
driven Al liner implosion have been obtained
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Initial results indicate that we are doing a reasonable job of i) Moo
modeling multimode MRT instability growth
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Helical perturbations are also being investigated as a i) i,
Laboratories
means to mitigate instabilities and as a 3D test problem

= 41tAcos’ 0

Lincoln single-mode MRT Single-mode MRT }L
A=400 pum test target A=400 pm, 45° pitch target kp

Ay, =4nA cos’0

Fundamental mode
grows like T? = kg
Joint LANL/VNIIEF helical liner
Experiment on PEGASUS*

~Zero growth in
Fundamental mode

*B. G. Anderson et al., Pulsed Power Plasma Science (2001).



We fielded axially-polished liners to assess the
importance of the initial surface roughness on the
observed MRT growth in beryllium liner implosions
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(a) Experiment (b) GORGON 3D (c) GORGON 3D
(random+az.pert.)

(random pert.)

3 1
= Azimuthal correlation 'E‘z: : : :
= Necessary in 3D simulations E;':i;f’:ns [
= Single-mode MRT growth g:: : 5
studies 515 | A
0.:3—-(:"5 ] ll]167.7ns 167.7ns
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Transmission (%): 0 ST 100 Transverse Distance [mm]

= Liners are generally diamond-turned
= Smooth (10-50 nm RMS surface)

= Azimuthally-correlated tool Standard Process
groove (50 nm RMS)

=" Could seed MRT

= Axially-polished liners were
developed to test effects of
correlation and importance of After axial polishing
surface roughness (50 nm RMS)




Are the axially-polished liners
behaving in a significantly
different fashion?

New axially-polished
data >
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To address this question (and avoid time-integrated
self-emission) we focus our analysis on the edge
structure and try to quantify the symmetry

z2422 Frame 1 LHS
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The data do not suggest a significant implosion symmetry

difference for the two different initial surfaces
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The electro-thermal instability is an alternative ) i
mechanism that could seed MRT growth*

10—37I\||l||\\|I|I||JJJ|J||l|\|||_]|!|_

Nominal roughness
2X roughness
4X roughness
8X roughness

Calculations suggest
instability growth is :

independent of the initial -

surface roughness

105_||||||||||||1|\|||||\|||||||||||
=20 -15 -10 -5 0 5

T

Constant _ 10x thermal
electrical cond. Nominal conductivity

Time (ns)

Temperature perturbations give
rise to pressure variations which
eventually redistribute mass

* c.f., K. Peterson YO4.00004 on Friday




Comparisons between our modeling and experimental -
instability growth in solid Al liners are promising—the ) foen,
perturbation growth is larger than expected from MRT alone
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Two recent results may suggest that surface topology g =
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is not the dominant origin for the correlated instabilities

Dramatic reduction of instability growth is
consistent with predictions of electro-
thermal instability origin

Coated Uncoated

0.340 0.350
X (cm)

K.J. Peterson et al., manuscript in preparation.

Persistent helical structure in magnetized
tests suggests lathe marks do not
dominate structure

Axially magnetized implosion

Same target, un-magnetized
T.J. Awe et al., accepted by PRL (2013).




There are several related MagLIF presentations ) e,
including some in parallel with this poster session!
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= Monday 10:30 Gomez Overall progress on
MagLIF

= Monday 10:42 Slutz Low-convergence MagLIF

= Monday 10:54 McBride Semi-analytic MagLIF
model

= Monday 11:30 Waeis MRT growth simulations

= Monday 2:00 Sefkow MagLIF designs

= Monday 2:30 Awe Magnetized liner dynamics

= Thursday 9:30 Hansen Spectroscopic Bfield Meas.

= Friday 10:06 Peterson Electro-thermal instability

22



http://meetings.aps.org/Meeting/DPP13/Event/200015

We have made significant progress in developing
a fundamental understanding of implosion
instabilities in magnetically-driven systems

Sandia
m National

Laboratories

= We have benchmark-quality implosion radiography data for
= Single-wavelength seeded perturbations
= Two-mode multiple-wavelength seeded perturbations
= Unseeded beryllium liner implosions with standard surface finish
= Unseeded beryllium liner implosions with altered surface finish
= Axially-magnetized beryllium liner implosions (changes structure!)

= Detailed comparisons to simulations are underway or have
been published alongside the data

= The electro-thermal instability appears to be the dominant
seed for implosion instability growth

= Experimentsin 2014 will collect additional radiography data
= Helically-perturbed beryllium liner implosions

= Deceleration instability growth in inner liner surface )3
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Example Al liner surface photos indicate that alloys s
precipitate material in axially-correlated direction
when electrochemistry treatments are applied*®
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Vertical lines are machining marks
along azimuthal direction

Non-Al precipitates appear correlated
along axial direction, believed to be due
to the use of extruded metal stock




The addition of a 7-10 T axial magnetic field produces a
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We have begun to study nonlinear MRT instabilities and mode i) i,

coupling in carefully seeded multi-mode experiments

HYDRA Simulations
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*Ryutov, Derzon, & Matzen, Rev. Mod. Phys. 72, 167 (2000)



Lincoln multi-mode experiments will test our simulation code i) i,

Laboratories

predictions of MRT instability growth in the nonlinear regime

areal density FFT at each axial position
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Development of well resolved long wavelengths can be affected i) fmat
by higher grid resolutions through nonlinear mode coupling
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Onset of nonlinear saturation occurs earlier in time at i) N
smaller amplitudes in the multi-mode case

Single Mode Multi-Mode

[ | o | I | oo | T | [ | oo | ] I | T | b | [ | o | [ I oo | [
200. - -~ 100.0— “w_ -
100.0— _ | — - _ | -
- A=402 ps (sim) - - =402 ps (sim) -

- A=201 us (sim) - =857 us (sim) -
50. __ A=134 ps (sim) < __ - A=201 ps (sim) -
- N 10.0— ?.=;'232;ls-|:51n1:| -
20. - - - -
10.0— — E -
5 - - -

5. — - ’

‘- - 10— _
- 2k2 - ~ -
2 2 - -
1.0— 3k2 — — .
RN N A N N e N N N A RN NN N

016 0.18 020 022 024 026 0.28 016 018 020 022 024 026 0.28

30




