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ﬁ' Why Batteries? @

Batteries are both enabling and impeding the
development of new energy-related technologies.

Solar energy Wind power
' Utility infrastructure e
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Portable electronics
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ﬁ Battery Materials Motivation @

What are the focal points of modern battery research?
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http://en.wikipedia.org/wiki/Ultracapacitor



g Battery Basics: A Lithium lon Cell @

Electrolyte

Litjum Salt in Organic Solvent

Cathode Current Collector +

Aluminum

Anode Current Collector
Copper

0
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Cathode Anode
Lithium Metal Oxide Se pa rator Carbon



' Candidate Cathodes @

Typical cathodes are based on metal oxides with
“dismal” capacities

Cathode Capacity (mAh/g)
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Is there a higher capacity alternative?



Consider Iron Oxides

Iron oxides are attractive high capacity

materials Phase (mAHr/g) | Phase | (mAHr/g) Phase (mAHTr/g) Phase (mAHr/g)
> H!gh energy denglty LiFeO, Li,FeO, Li,FeO, 610 ) | Li,o+Fe | Cio07)
» High power density

> Low cost Li,FeO, Li,FeO, LiFe,0, | 458 | LiFe,0, | 336
> Safe (re|ated to COSt) Li,FeO, 447 LiFeO, 258 LiFeO, 305 LiFe,O4 168
> Lightweight LiFeO, 223 LiFe,O 129 LiCoO, 180 LiFePO, 140

olume
mentally friendly

Energy density is the product of voltage and capacity:
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% A Problem with lron Oxides @

Iron oxide seems an obvious choice as an electroactive material...why
aren’t we using it in modern batteries?

Low voltage plateau
Poor (virtually non-existent!) cyclability
Slow kinetics (electrically and ionically diffusion limited)

Capacity (mAh/qg) Ambient Temp

— 200 400 600 800 1000
33 | | | | |
2
> 9 Morzilli, S., et al. 1985.
[
5 Voltage plateau is too low for a cathode

0 1 2 3 4 5 6

x in Li_Fe,O, Fe



Extending Voltage Plateaus to @
Enhance Capacity

Capacity (mAh/g)
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E® vs. Life=®

x in [LiFe0, gq]
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At 400°C “new” phases in the Li-Fe-O phase diagram are stable. These
phases result in the formation of “Voltage Plateaus” that enhance capacity.




Extending Voltage Plateaus at @
Room Temperature

Controlling phase conversion behavior stands to impact energy density
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Continuing to Explore Li-Fe-O @
Phase Space

Understanding the relationships between materials phase
and electrochemical behavior may facilitate access
increased capacity at higher potentials

New phases of lithium iron
oxide, such as those containing
“Superiron” (Fe®*), promise
higher voltages.

Dit ge of Fe(Vl) in Li cells
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Licht, et al. Electrochem. Sol. St. Lett. 3 (5) 209-212 (2000).
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# Superiron — Not So Super? @

Superiron (Fe®*) ferrates proved electrochemically
inactive or synthetically impractical.

K,FeO,
3
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LiFePO,* A “small” success

> Excellent intercalation —
virtually no lattice change on Li*
insertion or removal.

» The oxygen is tied up in the
o R S phosphate, so it will not react with

, r — . electrolyte (safer)

» Reasonable voltage and
capacity

0 20 40 60 80 100 120 140 160 0 10 20 30 40 50
Capacity, mAh/g Cycle

» But...packing density drops dramatically
» Higher surface area means you need more binder — you lose active material.
» LiFePO4 is a poor electrical conductor

Largely resolved by doping or integrating with nanoconductive carbons

SWNTs have also been considered — high electrical conductivity (5 x10° S/m)

Sandia
m National
Laboratori




Nano-Enabled Fe, O, Cathodes @

=724
Nanoscale morphology of iron oxide structures have
been shown to extend voltage plateaus!

Capacity (mAh/g)
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Larcher, D., et al. J. Electrochem. Soc. (2003). 150 (12) A1643.
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Size-Dependent Cathode
Enhancement

)

Reducing particle size can produce extended voltage plateaus.

Cell Voltage (V)

Large Particle Size

Consider K,FeO,

Submicron Particle Size

Cell Voltage (V)

Li-Al alloy formation
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Is “Nano” Universally Beneficial?

Reducing particles to nanoscale only improves performance in select phases...

Cell Voltage (V)

Introduces new processing challenges (binder/active material interfaces)

Reduces effective active material content

3.5+

2.5

0.5

Bulk Fe,O,

Nano Fe,O4

Fe,O, + Li*=> 3Li,0 + 2Fe

500

1000
Capacity (mAh/g)

1500

2000

The effect of reducing patrticle
Ssize must be considered on an
individual materials basis.

Nano Fe,O,




Iron oxides show consistent™ voltage plateaus around 1V
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‘ Electrochemical Cycling of Iron Oxides

B-Fe,O; cycling, charge efficiency, and capacity are all
enhanced relative to other Fe,O4 polymorphs
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Understanding $-Fe,O,

Ex-situ and in-situ X-ray diffraction shows there is a
phase transformation during discharge
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Phase Change Kinetics

Phase transformations in Fe, O, will be kinetically slow...

(0.5774,1)

FeQ x=0.8860y
4

N FeO x=09623
AND 3
a x= 1155y
N, /FeOQ

x=1.34Ty
I'l/{/l"'., +3):e203

corundum, A
spinel 117

y=-1.732%+2

Li 654 3 23 ¢ kS 1 0.5 0.1 Fe

(0,0) LifFe (1.155,0)

LiFePO, is kinetically fast in part
because reversible Li intercalation
does not change crystal structure.

LiFePO, (triphylite) and FePO,
(heterosite) are both olivine-like
orthorhomic crystal structures.

Iron oxides may have significantly
greater crystallographic change
during cycling.
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‘ Open Lattices: FeOOH Polymorphs

Taking a cue from the p-Fe203 work, consider FeOOH polymorphs

5-FeOOH l

<+ (Feroxyhyte)

i
TN R TN S L

-FeOOH
(Lepidocrocite)

1
' A

[-FeOOH
(Akaganeite) I

«-FeOOH
(Goethite)

Y . hi
g™ gy Ay iy et i R

'y

Py
1

' oy f\*k-mmm,.&qw/ I‘\.M.m»/

4
"'w«mw«h . :ﬂ"

R
A
RS
A
A

ytytyl
Apkpp

PR

\uﬂpwy\'ﬁl'wm'pw el

p-FeOOH
3 U\ N
v-FeOOH 0-FeOOH
e
BN U
gagnsns W
AR W
et L
d 1 1
A LA T A T




P
4 Electrochemistry of FeOOH @

+

potential (V vs. Li/Li )

Oxy-hydroxides show promising cycling behavior with good capacity near 2V.
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| ' lon Pathways in Cathodes @

Other layered materials are known to be effective cathodes owing to excellent
ion transport properties.

LiCoO, LiMn,O,

) R ¢
¢ % .




' A Problem with FeOOH @

LiPFg =—— LiF+ PFs Hydroxides can restructure, liberating
ROH water.
HF + Rj
5 j)\ Trace water or alcohol impurities
RF B ( RO™OR catalyze the thermal decomposition of
FoF electrolytes.
RF
. O O Produces:
F-puF FI\_—\‘P\OJ\OR <~ Fluorinated organic contaminants
oR 4 HF!
/& II:
Fep—F
@) F/(F';\F D CO
Y 4—\7 WPo
FI IP\F F\\‘||:|>\ FF OR 2
F £ OR PFs

Not Good!

Brett Lucht
University of Rhode Island
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ﬁ' Solving the Problem with FeOOH? @

Take out the water!

Measured weight loss of water at 10.6% (vs. 10.1%
theoretical) and x-ray diffraction show a decrease in
lattice parameter (but retention of crystal structure)
confirming:

2FeOOH = Fe,0, + H,0
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P
v Cationic Doping Maghemite [:IE

Ce** shows good solubility in the y-Fe,O, lattice
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' Electrochemistry of Ce-y-Fe, O,

Doping the y-Fe,O; crystal lattice with large cations improves
electrochemical behavior

Ce:Fe molar ratio
| © 01 (Fe0))
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Ce-doped y-Fe, 0,
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Modeling Cerium Doping

Potential energy convergence and structures for the DFT optimization of highly
defective Ce-doped y-Fe,O; shows significant lattice distortion.

Energy (Ha)

DFT optimized

spin unrestricted
PW91 functionals

Optimization Step

Foesr = 1.01 A

Ceg€3Fe52096
Xeo = 0.15

E = -2722 kcal/mol

Foesr = 1.01 A

CeqyFe,5€40qs
Xeo = 0.19

E = -2698 kcal/mol



' Size Matters @

Improved electrochemical s "y
performance is tied to the size, T )
= 100 N
not the charge of the dopant. 3 ol Thonagy, b 4 ]
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*rCe(IV) = 101A, rY(|||) = 104A, FZ,.(|V)=0.86A
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| ' Comparing Cationic Doping @

Feess = 1.01 A

Ceg€sFes;0gs Zrg€sFes5,0g6 Y2Fes52096
X, = 0.15 X5, = 0.15 Xy=0.19
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In situ Diffraction Coupled with @
Electrochemical Testing

Electrochemical “pouch” cells can be used to perform “in situ” diffraction
analysis during electrochemical cycling

polypropylene

Al curren
collector

LiIMO,
cathode

Li anode

Cu current
collector

polypropylene

Rodriguez
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‘ Comparing Ex-Situ and In-Situ Methods

Ex Situ Measurements In Situ Measurements

"

electnical
leads electrode tape

- electrolyte & separator

s lithium foll

current collector

after cell discharge or cycling, electrode is

removed in dry room or glove box « new CINT capability: battery cell attachment for Rigaku XRD
electrode coating is sealed in Be dome fixture in « Be window allows simultaneous electrochemistry and XRD

the glove box or dry room - free-standing electrode tape (not coating) must be made
limitation: many cells must be assembled, « challenges: many cell compenents reduce signal-to-noise ratio,

tested, disassembled to get full picture additional peaks due to beryllium
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- ' Interfacial transport theory of Li @
i‘ in LiFePO,

path of
de-lithiation
FeO, reaction front PO
octahedron 4
tetranedron . Laffont, et. al* has suggested

that Li transport occurs by
“unzipping” the Triphylite
e — LiFePO, phase.

 Li atoms are thought to
Li propagate out of the host
RO lattice via the b-axis, leaving
behind the Heterosite FePO,
AN compound
o * Intercalation of Li occurs in
_J the reverse fashion.

*L. Laffont, et. al, Chem. Mater., 18 5520-5529 (2006).




‘ Doping with a Wide Range of Cations @
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Cation Doping to Enhance Capacity @

Cationic substitution has also been shown to improve
capacity at higher voltages in iron-based oxides

o

-

Cell Voltage V/ V

Replotted from: R. Kanno et al. 1997.

Li, ,Fe,,Ni; 3O,

1 LixFeqgNig40;

Potential candidate dopants:

1 | | 1 1

0.00 0.08 e.10 0.15 0.20 0,29

X

Structural stabilization: Al, Ni
Electroactive dopants: Co, Mn

Computational Modeling will be used to guide
experimental dopant studies



lIron Oxide Electrochemistry

Cell MES 010 - Pouch Cell Cell MES 009 - Pouch Cell
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