SAND2012-1459 C

SAND2012- 1459C

Parallel Particle Swarm Optimization (PPSO) on the Coverage Problem in
Pursuit-Evasion Games

Shiyuan Jin'!, Damian Dechev'-?, Zhihua Qu'
1: Department of EECS
University of Central Florida
Orlando, FL 32816
2: Sandia National Laboratories
Scalable and Secure Systems Department
Livermore, CA
sjin @knights.ucf.edu, ddechev@sandia.gov, qu@mail.ucf.edu

Keywords: Parallel computing, PSO, coverage optimiza-
tion, pursuit-evasion games

Abstract

A Parallel Particle Swarm Optimization (PPSO) algorithm
using MPI is implemented to solve the coverage problem
of pursuit-evasion (PE) games where multiple pursuers need
to cooperate to cover an agile evader’s possible escape area
within reasonable time. The area to be covered is complex
and thus difficult to calculate analytically. With the use of
PPSO, maximum coverage is achieved in less time, given
the minimum number of pursuers. The computation time can
be further reduced by optimizing the fitness function based
on data locality. In addition, using variable length of com-
munication data frame performs better than fixed length in
reducing inter-process communication time when the num-
ber of processors increases (more than four in the test exam-
ple). Simulation results show a comparison of the speedup,
the computation time before and after optimizing the fitness
function, and communication time between fixed and vari-
able data frame. Pursuers’ positions and orientations are also
presented to show the effectiveness of the PPSO algorithm.

1. INTRODUCTION

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Eberhart and
Kennedy [1] in 1995, inspired by social behavior of bird
flocking in search for food. PSO has been successfully ap-
plied in many areas such as multi-objective optimization,
wireless sensor network, base station coverage problem, and
intelligent control. However, the major obstacle limiting the
use of PSO in real-time execution is its long execution time
[2]. Parallel PSO is a possible way to expand traditional PSO
applications. !

!'Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Pursuit-evasion (PE) games are one of the challenging
problems in which pursuers try to capture evaders as soon
as possible whereas evaders attempt to avoid being captured.
PE games have numerous applications such as military com-
bat operations, agent cooperation and competition in multi-
agent systems, and wireless sensor-actuator networks. The
dynamics of the games requires that pursuers and evaders
make strategies for the next step in real-time. If it takes sec-
onds for pursuers to make a decision, it would give the evader
enough time to escape, and vice versa. This paper focuses on
one-step of PE games, i.e., given the evader’s location and
orientation, how pursuers find their positions and orientations
such that the evader’s possible escape area or reachable set
(RS) is fully covered. Once the one-step coverage problem is
solved, the PE game is just a sequence of many such steps.

Unlike most other optimization problems, the PE coverage
problem has its unique features:

(1) The area to be covered is a complex polygon whose
coverage is difficult to calculate analytically.

(2) The pursuers, whose reachable sets are similar to the
evader’s, can be regarded as a directional sensor—both loca-
tion and orientation need to be optimized.

(3) Parallel processing is necessary. The problem needs to
be solved within reasonable execution time.

The coverage problem is NP-hard [3]. To the best of the
author’s knowledge, no sequential or parallel PSO has been
found to solve this problem. In this paper, a PPSO algorithm
is implemented based on classic PSO. In PPSO, each pro-
cessor or node (the two words will be used interchangeably
hereafter) evaluates the fitness (or the percentage of cover-
age in this problem) values of particles. The master node col-
lects data from the slave nodes and broadcasts the particle
with the global fitness value. The slave nodes update their
individual particles based on the global fitness value. Two ap-
proaches are tested to reduce the computation and commu-
nication time. The fitness evaluation function is optimized to
reduce the evaluation time based on data locality informa-
tion. Variable communication data length is utilized to elim-
inate unnecessary communication data in iterations when the

lgalleg
Typewritten Text
SAND2012-1459 C

global fitness value is not updated.

The rest of the paper is organized as follows. Section 2. re-
views related work regarding PSO coverage optimization and
PPSO. Preliminaries of PSO and PE coverage problem are in-
troduced in Section 3. and Section 4., respectively. The pro-
posed PPSO approach is introduced in Section 5. Simulation
results and discussions are presented and analyzed in Section
6. Conclusions and future work are offered in Section 7.

2. RELATED WORK

The problem considered in this paper is motivated by [4]
where the authors use control theory and non-linear numer-
ical optimization approach to solve the PE problem. The
boundaries of reachable sets of the pursuers and evader were
empirically approximated by a polynomial of an ellipse.
However, their simulation shows that sometimes small re-
gions of the evader’s reachable set may become uncovered
due to suboptimal control actions generated by the optimizer
and the complexity of the problem. In addition, parallel pro-
cessing and execution time were not the focus of the paper,
although the author admitted that the execution time was an
issue.

The coverage part of the PE problem may be solved by
PSO. Although no PSO has been found in solving this spe-
cific problem, much research has been done regarding PSO
coverage optimization. Kukunuru et al. [5] use PSO to solve
a coverage problem in wireless sensor networks and achieve
optimal solution. A centralized, off-line PSO-Voronoi algo-
rithm [6] is used to minimize the area of coverage holes. The
authors claim that PSO-Voronoi algorithm achieves close to
ideal coverage, in spite of the time complexity of determining
Voronoi polygons. Xu et al. [7] proposed a PSO algorithm to
the coverage of a camera network in which the orientation of
each camera can be freely adjusted while camera positions are
fixed. Their results showed that the coverage can be greatly
improved by adjusting the orientation of each individual cam-
era.

However, most coverage problems are solved under the as-
sumption that sensors have circular coverage so that sensor
headings do not need to be considered. In addition, the exe-
cution time is not an issue to be considered for those prob-
lems. The computation intensive PSO algorithm requires par-
allel processing to reduce execution time. Tu et al. [8] use
parallel computation models of PSO to solve a path planning
problem. They compare the performance of the parallel com-
putation models use multiple threads with regard to different
communication capability among subgroups such as broad-
cast, star, migration and diffusion network topologies. Wang
et al. [9] presented a parallel PSO algorithm using OpenMP
to solve a facility location optimization problem. OpenMP is
a library that is most suited for shared memory multi-core ar-
chitecture. In their parallel algorithm experiment, two threads

are executed, and results show that, in addition to less time,
the parallel algorithm achieves better results than the serial
algorithm. Similar PPSO research also has been done by [10]
[11].

In this paper, the boundaries of the reachable sets are sim-
plified (details of the reachable set are introduced in Section
4.). A one-step coverage problem is optimized by PPSO. The
use of PPSO aims not only to reduce execution time but also
to maximize the pursuers’ coverage.

3. PRELIMINARIES OF
SWARM OPTIMIZATION

PSO is initialized with a group of randomly generated po-
tential solutions called particles. A particle is an encoding
representation of a solution. All particles form a swarm. The
goodness of a particle is evaluated by the fitness function.
After evaluation, each particle stores “pbest”—the particle po-
sition with the best fitness value it has obtained so far. In ad-
dition, the global best particle, “gbest”, i.e., the best of all
particles, is also stored. In every iteration, each particle uses
these two “best” particles to update its velocity and positions
based on the following equations:

PARTICLE

Vi(t+1) =w=V;(t) + C *rand() * (pbest; — X;(t))
+Cy xrand() x (gbest — X;(t)) (D

Xi(t+1) =Xi(1) +Vi(t +1) 2

where V;(¢) and X;(¢) are the velocity and position of particle
i at time ¢, respectively; pbest; is the particle with the best fit-
ness value obtained so far by particle i; gbest is the global best
particle with the best fitness value of all particles. rand() is a
random number between (0,1). C; and C; are constant, repre-
senting learning factors. w is the inertia weight representing
the effects of previous velocity.

The equations can be explained geometrically in Fig. 1.
Suppose that the current particle is at location X;(z), its next
position X;(¢ + 1) is the summation results of weighted vec-
tors V;(¢), pbest;, and gbest, which function as inertia, self-
consciousness, and collective consciousness, respectively. As
aresult, X;(¢ + 1) is closer to the best position found so far.

Algorithm 1 is the pseudo code of the PSO algorithm.

4. PROBLEM DEFINITION

The pursuit-evasion coverage problem is defined under the
following assumptions:

1. The evader runs slower but is more agile (small mini-
mum turning radius) than pursuers.

2. All pursuers have the same-sized reachable set.

[nertia Self-Consciousness
pbest

Vi(t)

Collective-Consciousness
ghest

X0
Figure 1. PSO particle motion

Algorithm 1 PSO algorithm
(1) Generate M number of initial particles
for i =1to MAX _LOOP do
for j=1toM do
(2) Calculate fitness value f; of particle j
(3) Update pbest and gbest
(4) Update particle velocity according to equa-
tion (1)
(5) Update particle position according to equa-
tion (2)
end for
(6) If the maximum iterations is reached or optimal
solution is found, terminate the algorithm.
end for

3. Pursuers are not allowed to enter into E’s sensing range
(within a radius of Rg) in the coverage optimization
phase. Also suppose Rg < V,At, where V), is the pur-
suer’s speed and At the pre-defined time interval.

4. Every pursuer knows the instantaneous location, orien-
tation, and speed of the evader, and so does the evader.

i \\\ { E sensing range
E O\

p

R
\
P2

Figure 2. An example coverage problem with four pursuers
(P} — Py) vs. one evader (E)

Figure 2 is an example of four pursuers that successfully
cover the area of A, the RS of evader E in At. Thus, E would
be unable to find a “loophole” to escape.

The evader’s RS is defined in Fig. 3, in which point B(x,
y) is the farthest position the evader can reach after time At
when the evader turns 6 angle first, then goes straight.

x=R(1—cos0)+ (Vg -At — R -0)sind (3)
y = Rsin®+ (Vg - At — R -0)cos6 4)
where Vf is the maximum speed of the evader. R is the mini-

mum turning radius. Detailed description of the reachable set
can be found in [12]. Due to the evader’s higher maneuver-

y
D (0. Vi -At)
—

E@©0 CRO F x

Figure 3. Definition of the evader’s reachable set

ability, multiple pursuers need to cooperate to guarantee full
coverage of the evader’s RS before entering into the capture
phase. The coverage problem can be represented as the fol-
lowing equations:

min N (®)]

S.t.
N
Se(V Y (USp) =Se ©6)
i=1

where X, Y,,, 0, are pursuer pgs X, y position and head-
ing, respectively. N is the number of pursues to be minimized.
Sk is the area of the E's reachable set. S, is the area of pur-
suer p}s reachable set. Equation (5) minimizes the number of
pursuers needed for full coverage, subject to the condition of
full coverage represented by equation (6).

Given the reachable set areas of the evader and pursuer, Sg
and Sp, the minimum number of pursuers required for full
coverage meets the following relationship:

S
N, > {Sﬂ 7

The areas of the reachable sets can be calculated using inte-
gral calculus, but the calculation is omitted here due to space
limitation.

S. THE PROPOSED APPROACH

A simple yet slow approach is to partition area A (Fig. 4)
into tiny cells. A complete coverage means that any cell in

area A must be covered by the reachable set of one of the
pursuers. Obviously, the smaller the cells, the more accurate
the coverage calculation, but the more computational time it
requires.

Figure 4. Area A is fragmented into small cells

5.1. Data Communication Topology

There are several kinds of communication network topol-
ogy, but in this paper the master/slave model is used as it is
more suitable for this problem. The particle with the global
fitness value needs to be shared by all nodes, so it is more
efficient to designate a master node to collect data and broad-
cast the global best. Particles in each node share the local
best fitness value through shared memory; particles in differ-
ent nodes share the global fitness value through inter-process
communication.

Fig. 5 shows data flows and process functions. All proces-
sors evaluate a fraction number of particles. Each slave node
sends the particle with local best fitness value (pbest) to the
master node, which collects results and broadcasts the par-
ticle with the best fitness value (gbest) to slave nodes. Each
slave node uses the gbest and pbest to update its position and
velocity.

Master processor Py
Collects pbests from processors
Pi. P2 . Pn

Chooses gbest and broadcasts.
Updates position and welocity
Fitness evaluation

.

Global besLl I Local best Local best

Global bestl

—

I Local best Global besLl

Processor P,
« Sends local best pbest 1o Py
+ Updates position and velocity|
+ Fitness evaluation

Processor P,
« Sends local best pbest to Py
* Updates position and velocity
« Fitness evaluation

Processor P
+ Sends local best pbest to Py
+ Updates position and velocity
« Fitness evaluation

Figure 5. PPSO data flows and process functions

5.2. PPSO Task Partitioning

There are two data partitioning schemes to be considered
before implementation.

1. Scheme A: The master node broadcasts every particle
to slave nodes. Each slave node calculates the coverage

of a subarea of E’s RS, and sends back to the master
its coverage result. The master totals the results for each
particle.

2. Scheme B: Each processor/node processes a portion of
total particles independently; each slave processor sends
the particle with the best coverage to the master node.

Schedule B is used in the implementation of the PPSO. It
has less communication overhead as the master node does not
need to communicate with the slave nodes for each particle
evaluation.

5.3. Swarm Initialization in PPSO

Swarm is usually initialized using uniform distribution ap-
proach over multidimensional search space, but it is not the
efficient way for this problem. To prevent the algorithm from
converging too slowly, it is necessary to discard those “un-
qualified” particle solutions in which at least one pursuer does
not cover any of the E’s RS or it is inside E’s sensing range.
The following approach can avoid many “unqualified” initial
particles.

Suppose two pursuers are needed for a full coverage. For
each particle, two points, ¢; and ¢;, are randomly chosen from
the area E’s RS. The positions and headings of pursuers Py
and P, can be randomly generated but are subject to two con-
ditions: (1) ¢; and ¢, are inside at the RS of P; and P>, re-
spectively, and (2) Py and P, are outside of E’s sensing range.
Fig. 6 is an example of how a particle is initially generated. In
PPSO, each node is responsible for generating a sub-swarm,
i.e., a portion of total particles. Suppose there are n pursuers, a

E's RS

--~" E’s sensing range

Figure 6. Initial particle generation

particle can be represented as an array shown in Fig. 7, where
fit denotes the fitness value of the particle; x;, y;, and 0; rep-
resent the x, y position and heading of pursuer i, respectively.

P] Pg P1 Pn
/—A—f_)%\ K—Aﬁ
|ﬁt|x| ‘y1‘9||X2‘yz‘92|...‘Xi‘Yi‘ei |...‘Xn

¥n en

Figure 7. Particle representation

5.4. Fitness Function

The fitness value of a particle is the coverage defined as

follows:
Number of covered cells

=C 8
! * Total cells ®)
. . o . . / .
C— 0 if3i P, is within E's sensing range ©)
1 otherwise

Equation (9) penalizes a particle in which any pursuer gets
into the evader’s sensing range. The higher the fitness value is,
the higher percentage the coverage, and the better the particle
is.

Fitness evaluation is the most time-consuming part of the
PSO. To check the percentage of coverage, all cells inside
the reachable set A need to be checked. In each iteration of
PPSO, different nodes evaluate their assigned particles inde-
pendently. Only the global best fitness value needs to be trans-
ferred across different nodes.

5.5. The Proposed PPSO Algorithm

The PPSO is the parallelization of algorithm 1. Suppose
there are M processors, po, P1,....Pm—1- Po is the master pro-
cessor and pj,..., p—1 are slave processors. Suppose also that
there are NUM _PT particles in each iteration. The algorithm
does the following steps:

1. po tries the minimum number of pursuers, N,, which is
calculated by equation (7).

2. Each node generates & U"Af]f T

particles according to 5.3.

3. Each node including the master evaluates the fitness val-
ues of particles according to 5.4. Each slave node sends
its pbest to py.

4. po collects results from slave nodes and broadcasts
gbest.

5. Each node updates its position and velocity according to
equations (1)(2) .

6. If coverage=100%, then the algorithm terminates.
7. If loop < Max_Loop, go to step 3.
8. If loop > Max_Loop, then N, =N, + 1, go to step 2.

Fig. 8 is the flow chart of PPSO.

A

Each processor
ch pro N=N+1
initializes

Particles Yes
Loop=0

No
valuate nimess

and sends pbest

st e T

Loop=Loop+]1

Loop»Max_Loop?

Py chooses ghest
and broadcasts

[

Each processor
updates velocity
and position

Figure 8. PPSO flow chart in master/slave mode

6. SIMULATION RESULTS AND DISCUS-
SIONS

The PPSO algorithm is implemented in C/C++ and MPI
library. Two PE problems with different pursuer speed and
minimum turning radius are tested in a cluster running in
Redhat Linux with the following hardware configuration in
each node:

Processor: Intel Xeon CPU 3.0GHz

Cache size: 2M

Memory size: 8M

Note that once the minimum number of pursuers is deter-
mined at the beginning, it will not be changed due to the fixed
area of the reachable sets of both pursuers and the evader. For
this reason, the execution time in the simulation is the time
measured after the minimum number is determined. Also,
due to the randomness mechanism of the PPSO algorithm and
possible varying load on the cluster (which may slightly af-
fect the execution time), all execution time is averaged over
10 runs.

6.1. Execution Time on a Two-Pursuer-One-
Evader Coverage Problem
This PE coverage problem uses the following parameters:
E’s position (300,200), E’s heading: PI/2
E’s speed: 90, E’s minimum turning radius: 90

E’s sensing radius: 150

P’s speed: 130, P’s minimum turning radius: 300

P’s sensing radius: unlimited

Swarm size: 20, Maximum iteration: 40

Time interval for the reachable set Ar = 2 seconds

Cell granularity: 8

Fig. 9 shows two graphic output of the coverage. Fig. 9(a)
is the output of the best fitness particle chosen from the ini-
tially generated 20 particles. Fig. 9(b) is the result of the
global best particle obtained by PPSO at iteration step 29.
The data in the parentheses represents a pursuer’s x, y posi-
tion, and orientation.

Initial best: 77.1513% .
<-E's sensing range

P1{310, 560, -96)

(a) Best coverage of the initial 20 random particles

Final Coverage: 100.0%
E <-E's sensing range

P1({243, 569, -54)
(b) Full coverage at iteration 29

Figure 9. An example of two pursuers and one evader

The progressive fitness values with the number of iterations
is shown in Fig. 10. The algorithm terminates at step 29 when
it achieves a full coverage, although the maximum number of
iteration of PSO is 40.

As the swarm size is 20, the PPSO runs under the follow-
ing number of processors: 1, 2, 4, 5, and 10. These numbers
are chosen such that the load can be evenly partitioned into
different processors, i.e., each processor is given the same

1

0.9

G 0.8 s

3 -

50./

- 0.6

0.5

o]

% 0.4

5 0.3

-

> 0.2

0.1
o L
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of generations

Figure 10. Fitness vs. number of generations

number of particles. The computation and communication
time is shown in Fig. 11. The communication time increases
and computation time decreases as the number of processors
increases. Fig. 12 is the comparison of speedup. Given the
granularity of cell size in this example, four processors is the
“turning point” for the speedup. When the number of pro-
cessors is greater than four, the communication overhead in-
creases faster than the reduced computation time, causing the
speedup to decrease. Generally, the smaller the cell granular-
ity, the more processors are needed to perform fitness evalua-
tion.

.6
.4
.2
1=
0g B Communication time
e == @ Computation time
2 0.6
=
— m
— 0.4 [
20.2 — ‘
0
1 2 4 5 10
Number of processors

Figure 11. Computation time vs. communication time

3.5

3 et ——
2.5
£ o2

215 /

1
0.5
0

1 2 4 5 10

Number of processors

Figure 12. Speedup vs. the number of processors

6.2. Optimizing Fitness Function Using Data
Locality Information

Tests show that it takes an average of 2ms to evaluate the
fitness (or coverage) of a particle in the above example. The
evader’s reachable set is composed of 337 cells. To get the
fitness value, each cell needs to be checked if it is covered
by a pursuer’s reachable set. A typical run of the sequential
program shows that fitness evaluation takes up to 90% of the
computation time.

The computation time can be reduced by changing the
check sequence of pursuers based on cell locality - if a cell
is covered by the reachable set of P;, its next adjacent cell to
be checked is more probably covered by P;. Therefore, the
next cell needs first to be checked with the reachable set of
P;. Doing so can eliminate many unnecessary checks done by
fixed check sequence - from Pj, P,..., to P,. Table 1 lists a
comparison of the number of checks before and after using
data locality. On average, the latter reduces 25.25% of total
checks. The reason why the number of checks is greater than
the total number of cells, 337, is that if a cell is not covered
by one pursuer, it needs to be checked by another pursuer.

Table 1. Number of checks before and after using data lo-
cality (total cells: 337)

Particle # checks # checks Reduced
No. (fixed sequence) | (data locality) | checks
1 510 371 27.25%
2 502 397 20.92%
3 512 372 27.34%
4 513 369 28.07%
5 511 368 27.98%
6 512 372 27.34%
7 527 392 25.62%
8 509 370 27.31%
9 464 413 10.99%
10 518 372 28.19%
Average 508 380 25.25%

Fig. 13 shows that the fitness function based on data local-
ity information can reduce computation time.

6.3. Communication Time Using Variable
Length of Data Frame

At each iteration of the PPSO, the master node needs to
broadcast the global best particle including a fitness value and
all pursuers’ locations and orientations. The length of the par-
ticle is (3 *num_p + 1) in float data type, where num_p is the
minimum number of pursuers needed.

@Before

= W After

q Lk

1 2 4 3 10
Number of processors

Figure 13. Computation time before and after using data lo-

cality

Actually, in many iterations the best fitness value is not up-
dated (shown in Fig. 10). For this reason, instead of using
fixed length of data frame, communication data can be re-
duced at iterations when the best fitness value collected from
other processors is less than the existing global best. If so, the
master node only needs to broadcast a tag (an integer) notify-
ing all slave nodes that the global best is unchanged.

Nevertheless, using variable length of data causes extra
overhead. Before broadcasting actual data, the master node
has to add one more broadcast call notifying the length of
the next incoming communication data. In contrast, this is
not needed in the fixed-length data communication since all
nodes assume that the length is (3 xnum_p+1).

To better test the algorithm, the second test case assumes
slower pursuer speed, smaller minimum turning radius, and
an increased number of maximum iterations listed below:

P’s speed: 110

P’s minimum turning radius: 220

Maximum number of iteration of PPSO: 60

Other parameters remain the same as test case one. As the
pursuers run slower, three pursuers are needed to fully cover
the evader’s RS shown in Fig. 14. In this example, the PPSO
algorithm achieves a full coverage at iteration number 53.
Figure 15 compares the communication time between fixed
and variable communication data length. The variable length
approach performs worse under 2 and 4 processors. The rea-
son could be that the time saved for shorter message can-
not offset the overhead caused by adding one more broadcast
function call. However, as the number of processors continues
increasing, sending shorter messages when the global best is
not updated reduces overall communication time. Theoreti-
cally, under a given number of processors, the more pursuers
are needed, the longer the length of the particle, the better the
variable length approach performs.

7. CONCLUSIONS AND FUTURE WORK

A Parallel Particle Swarm Optimization approach is tested
on a cluster to solve the PE coverage problem. Simulation re-

—=R3(454, 296, -169)
...... $eE P2{499, 310, -173)

P3(489, 288, -180)
= P2(498, 312, -185)

(b) Full coverage at iteration 53

Figure 14. An example of three pursuers and one evader

)
e o
~

(
o

bime

=
o

BFixed comm. data
length

e
'S

B Variable comm.
data length

Communi cat
IS
o = o ow

1 2 4 5 10

Number of processors

Figure 15. Communication time between fixed and variable
data frame

sults show satisfactory speedup, the communication and com-
putation time with the number of processors, as well as the
graphic output of two test cases with different parameter val-
ues for the pursuers. In addition, the optimized fitness func-
tion by changing checking sequence based on cell locality
reduces computation time. Compared with the fixed length of
communication data, the variable length approach performs
better in reducing communication time when the number of
processor increases.

Our future work will focus on theoretical analysis of the
algorithm in terms of time complexity, and an improved algo-

rithm by adding the MPI multi-threading mode, that is, in ad-
dition to parallelizing the algorithm between processors, each
processor can spawn multiple threads to do another layer of
parallelization.

REFERENCES
[1] R. Eberhart and J. Kennedy, “A New Optimizer Us-
ing Particle Swarm Theory,” in Proceedings of the sixth

international symposium on micromachine and human
science, 1995, vol. 1, pp. 39-43.

[2] A. Farmahini-Farahani, M. Laali, A. Moghimi,
S. Fakhraie, and S. Safari, “Mesh Architecture for
Hardware Implementation of Particle Swarm Optimiza-
tion,” in International Conference on Intelligent and
Advanced Systems, November 2007, pp. 1300-1305.

[3] M. R. Garey and D. S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[4] C.F. Chunga and T. Furukawa, “A Reachability-Based
Strategy for the Time-Optimal Control of Autonomous
Pursuers,” Engineering Optimization, vol. 40, no. 1, pp.
67-93, January 2008.

[5] N. Kukunuru, B. R. Thella, and R. L. Davuluri, “Sen-
sor Deployment Using Particle Swarm Optimization,”
International Journal of Engineering Science and Tech-
nology, vol. 2, 2010.

[6] N.A.B. A. Aziz, A. W. Mohemmed, and B. S. D. Sagar,
“Particle Swarm Optimization and Voronoi Diagram for
Wireless Sensor Networks Coverage Optimization,” in

2007 International Conference on Intelligent and Ad-
vanced Systems, 2007, pp. 961-965.

[7]1 Y. Xu, B. Lei, and E. A. Hendriks, “Camera Network
Coverage Improving by Particle Swarm Optimization,”
EURASIP J. Image and Video Processing, vol. 2011,
2011.

[8] K.-Y. Tu and Z.-C. Liang, “Parallel Computation Mod-
els of Particle Swarm Optimization Implemented by
Multiple Threads,” Expert Systems with Applications,
vol. 38, pp. 5858-5866, May 2011.

[9] D. Wang, C.-H. Wu, 1. A., D. Wang, and Y. Yan, ‘“Par-
allel Multi-Population Particle Swarm Optimization Al-
gorithm for the Uncapacitated Facility Location Prob-
lem Using OpenMP,” in IEEE 2008 World Congress on
Computational Intelligence, June 2008, pp. 1214-1218.

[10] N. C. Chauhan, D. Aggarwal, R. Banga, A. Mit-
tal, and M. V. Kartikeyan, “Parallelization of Particle

[11]

[12]

Swarm Optimization and Its Implementation on Scal-
able Multi-Core Architecture,” in IEEE International
Advance Computing Conference (IACC 2009), Patiala,
India, March 2009, pp. 392-397.

B.-I. Koh, Byung-Il, George, A. D, Haftka, R. T, Fregly,
and B. J, “Parallel Asynchronous Particle Swarm Op-
timization,” International Journal for Numerical Meth-
ods in Engineering, vol. 67, no. 4, pp. 578-595, 2006.

P. J. Wong and A. J. Korsak, “Reachable Sets for Track-
ing,” Operations Research, vol. 22, no. 3, pp. 497-509,
May-Jun 1974.

