

Simulations and Theory of Model Microtubule Self-Assembly

Shengfeng Cheng and Mark Stevens

Sandia National Laboratories

Ankush Aggarwal

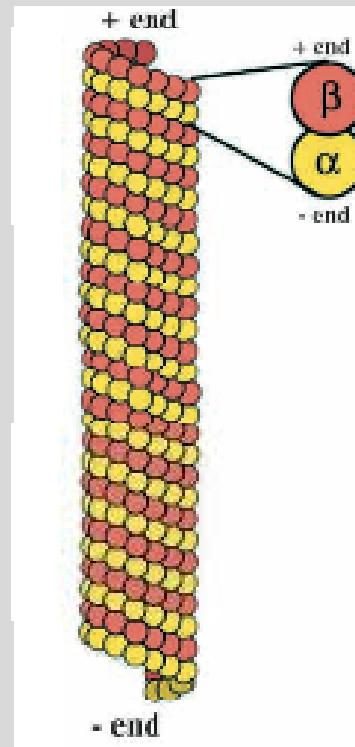
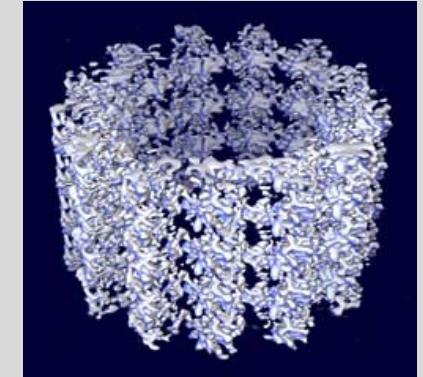
University of California Los Angeles

[arXiv:1201.2328: Self-assembly of artificial microtubules]

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

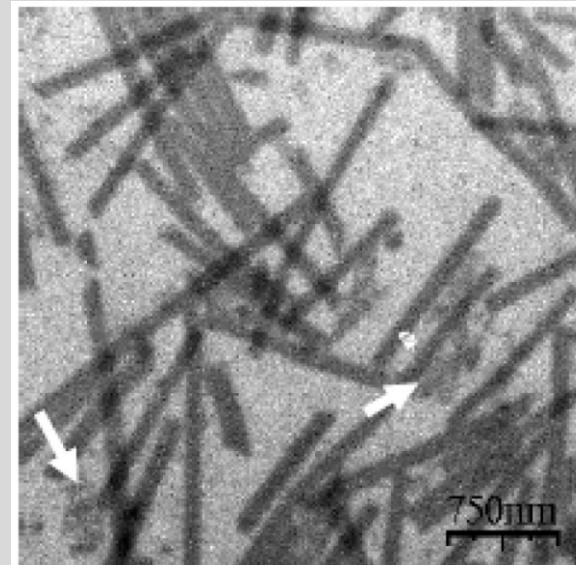
Microtubules and Tubular Structures

- monomer is α - β tubulin
- binding involves GTP/GDP
- tube contains 13 protofilaments
- polymerization/depolymerization
 - catastrophe
 - polarity
- γ -tubulin is a nucleation seed



microtubule

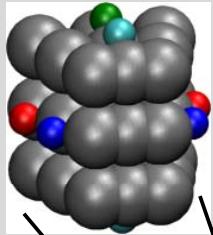
- Tube-like structures of S-layer proteins
- amphiphilic macromolecules
- coiled nanofibers



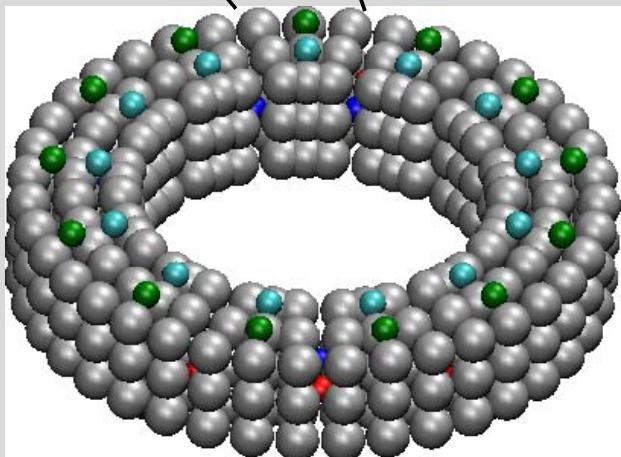
SEM of tubelike S-layer structures
(Bobeth et al.
2011, Langmuir)

...

We use wedges as building blocks in MD simulations

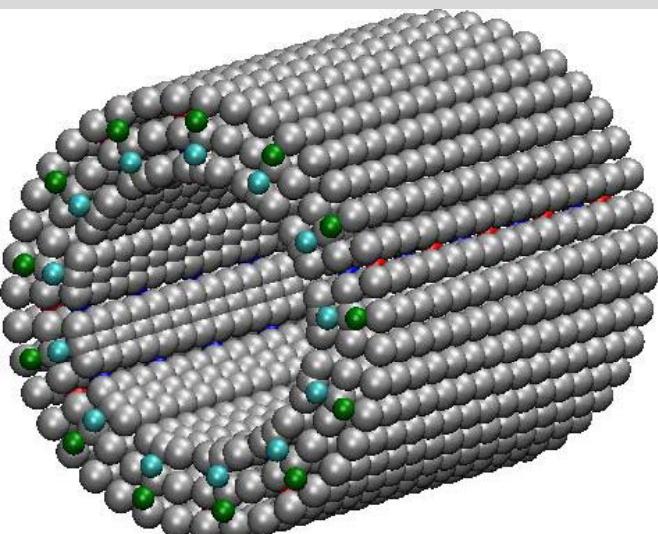


**rigid body
6 dof \rightarrow 3 kT**



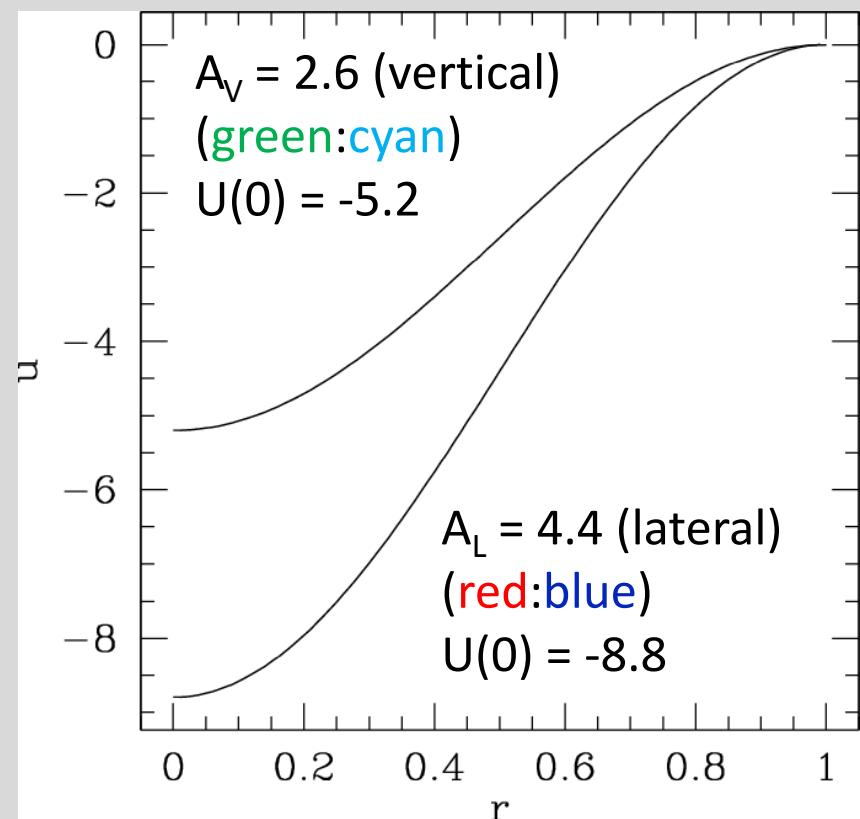
wedge particle

- similar to Rapaport for virus capsids
- designed to produce rings
- rings stack into tubes (13 wedges per ring)
- attraction only between specified sites
- gray particles interact purely repulsively



soft potential

$$U(r) = A \left[1 + \cos\left(\frac{\pi r}{r_c}\right) \right]$$
$$U(0) = 2A$$



Self-Assembly of Wedges: An Example

$A_L = 4.4$ and $A_V = 2.6$

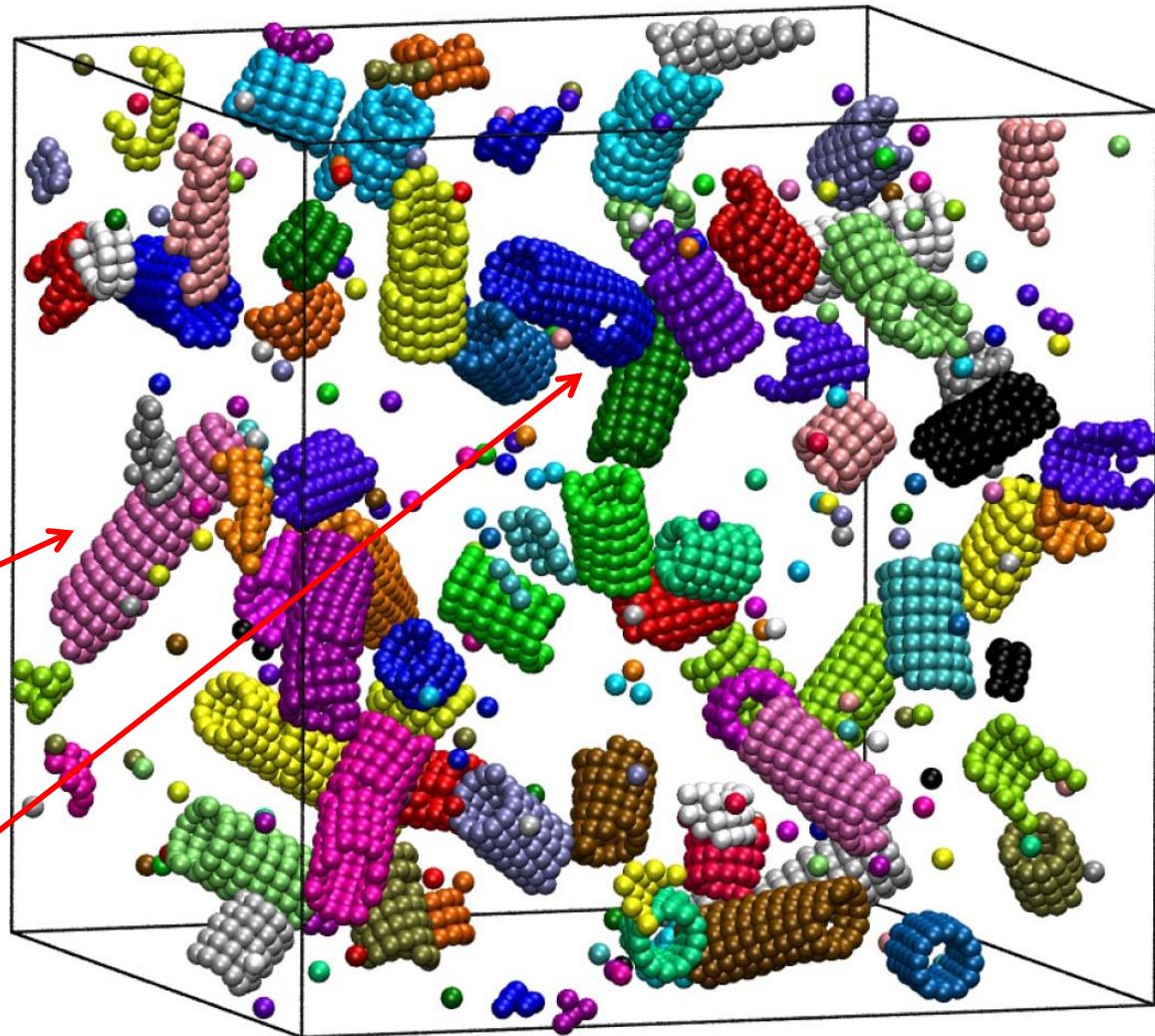
monomer volume fraction $\sim 4\%$

5000 wedge monomers

random distribution of monomers

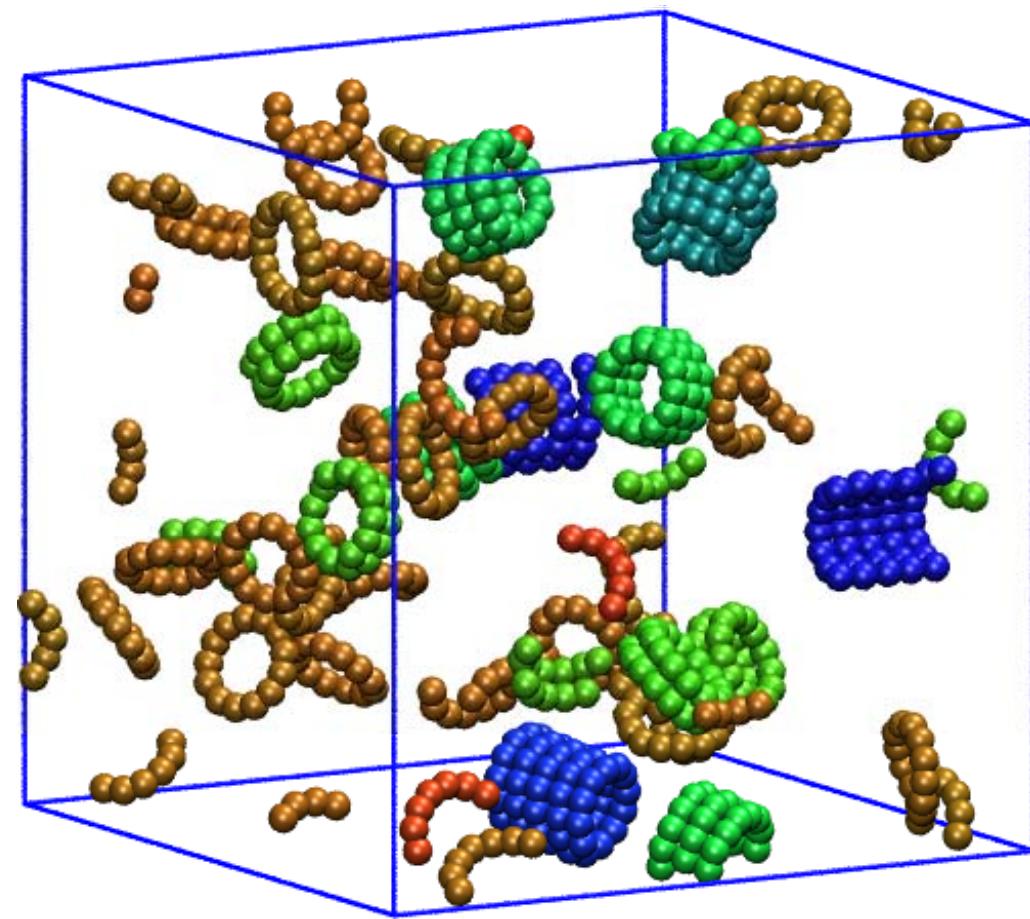
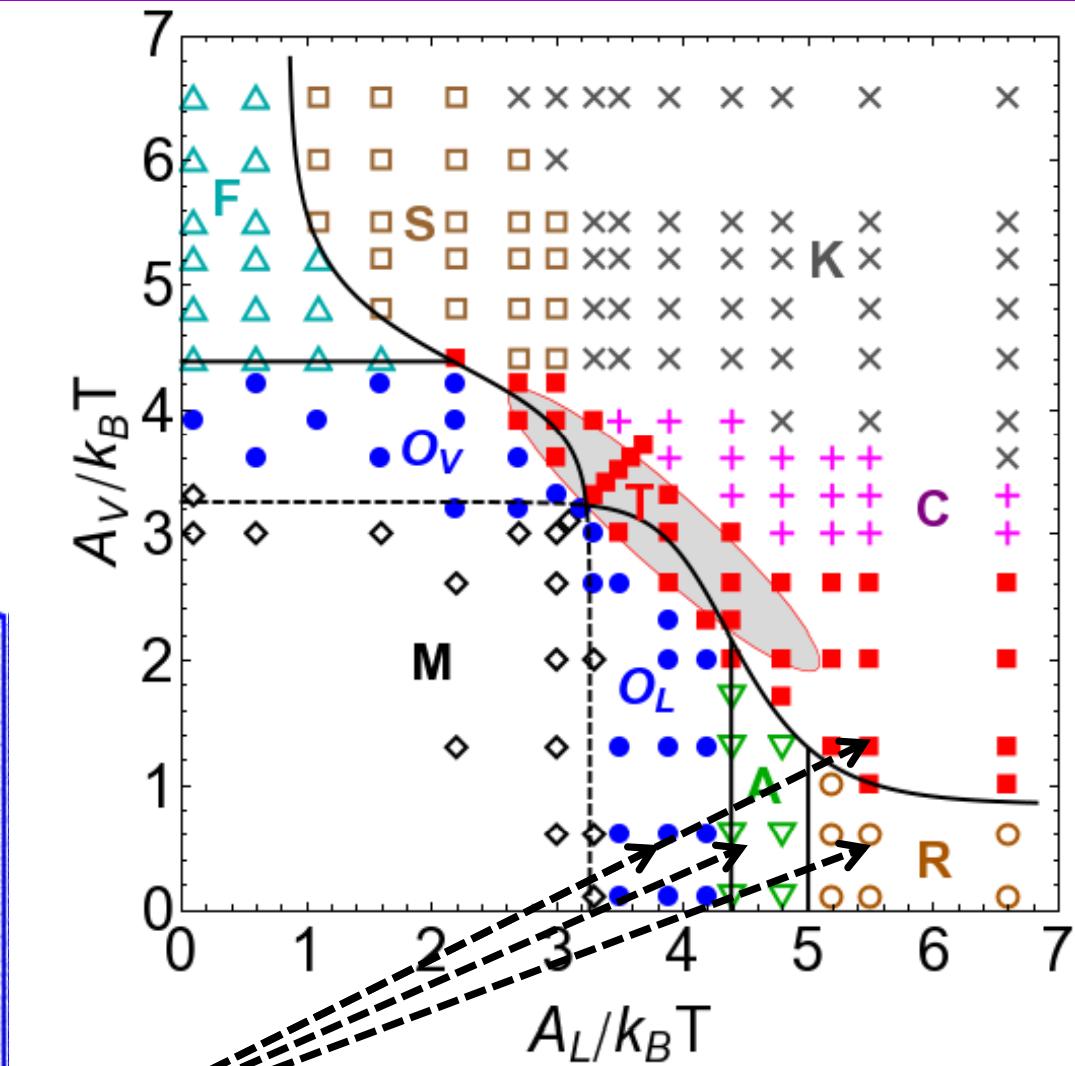
wedge shown as single particle
clusters size > 12 monomers

Many tubules & some fragments
with rings/tubes



Structure Diagram: Various structures can occur

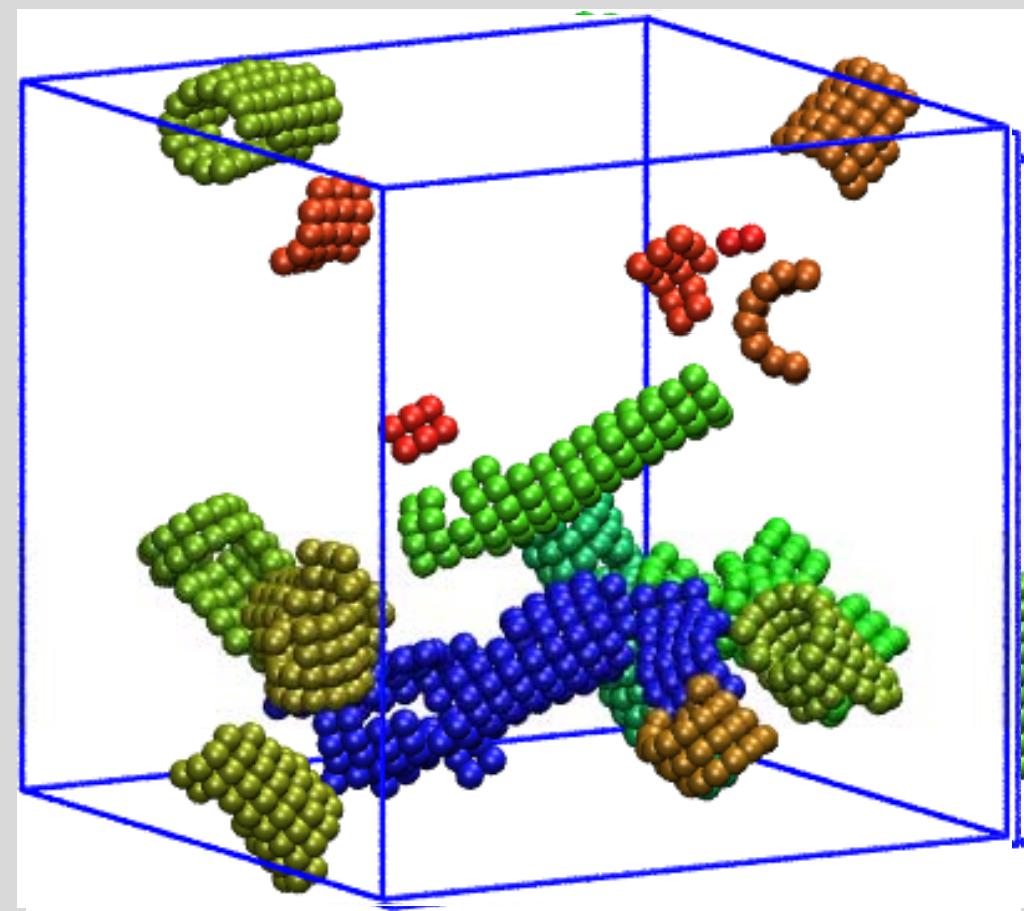
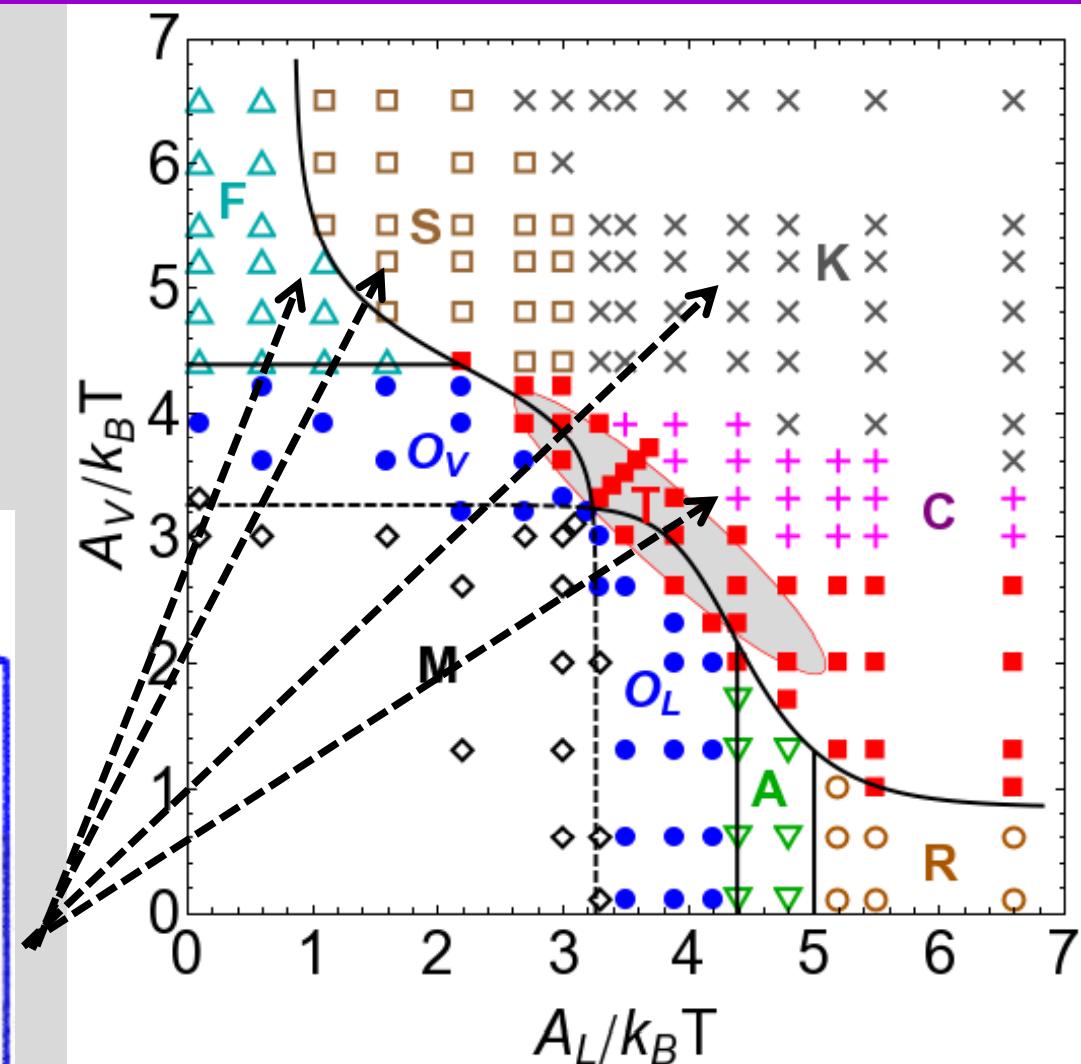
$A_L = 8.0$ & $A_V = 0.8$
at $\omega = 1.0$ (in units of $k_B T$)



Structure Diagram (continued)

$$A_L = 4.4 \text{ & } A_V = 5.2$$

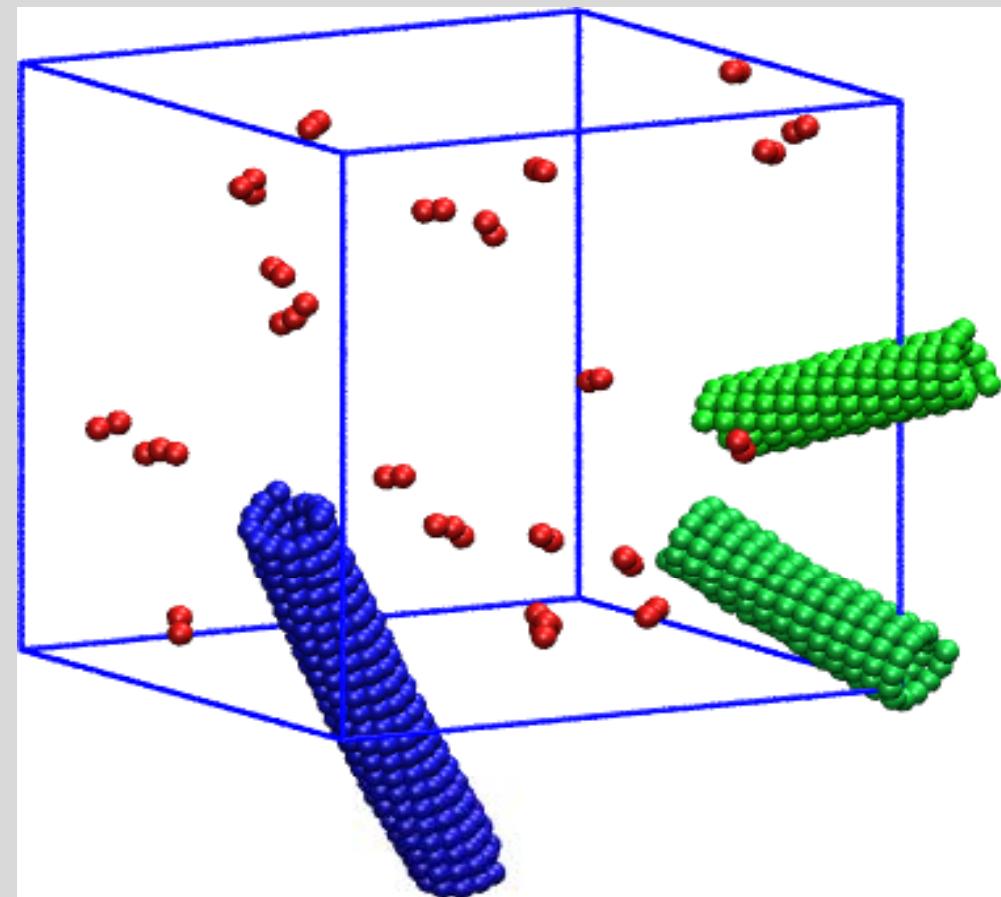
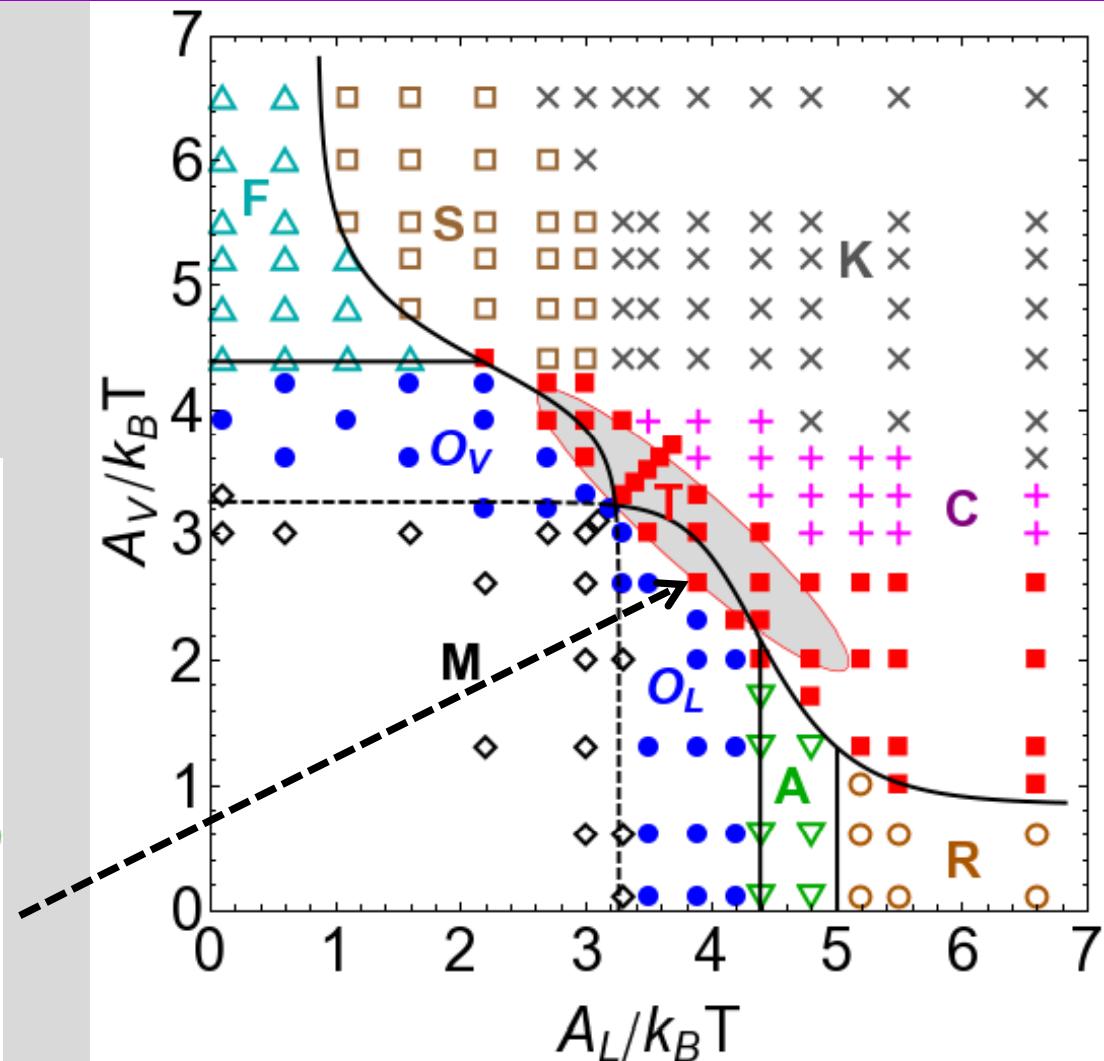
percolation cluster



Tubes are only formed in a narrow range of A

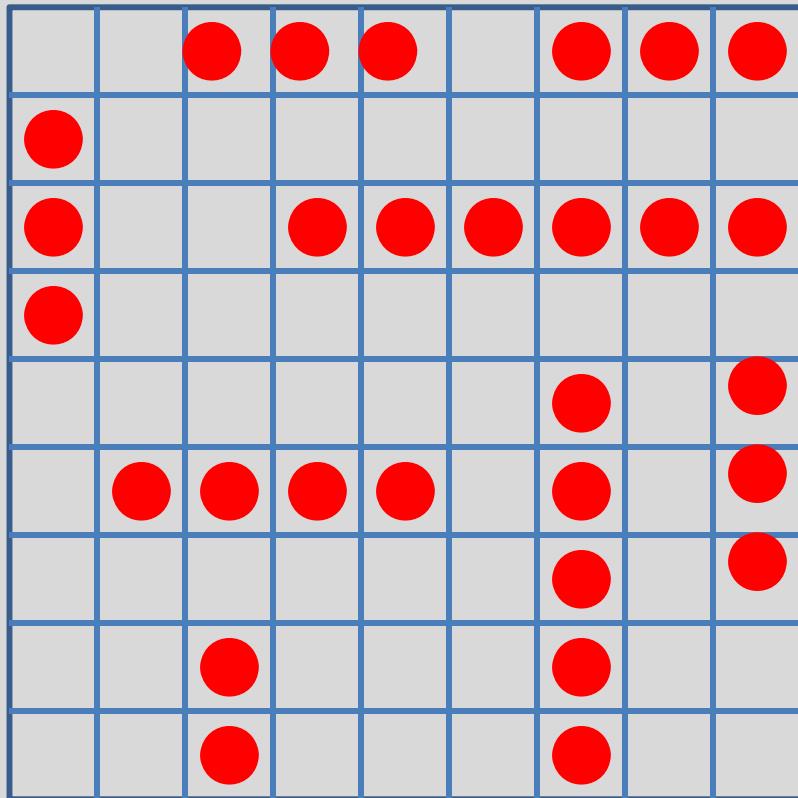
$$A_L = 3.9 \text{ & } A_V = 2.6$$

defect-free tubes (helical)



Reversibility of bonding is essential to remove defects by allowing structural rearrangements

A Flory-Huggins type lattice theory is developed to describe (straight) polymerization of wedges



When $A_L = 0$, wedges can only form straight chains through vertical bonding → straight polymerization

p : filament length

n_p : number of filaments with length p

g : binding energy for each bond

$$F = \sum_{p=1}^{p_{\max}} n_p \left((p-1)g - kT \ln z + kT \ln \frac{n_p}{M} - kT \right)$$

enthalpic contribution

entropic contribution

Mapping A in simulations to g in theory



$A_L = 0$
(straight polymerization)
 p : filament length
 n_p : number of filaments
with length p

- Predictions of n_p from Lattice Theory depend on g
- Calculate n_p in simulations at various A_V
→ Mapping between A_V and g

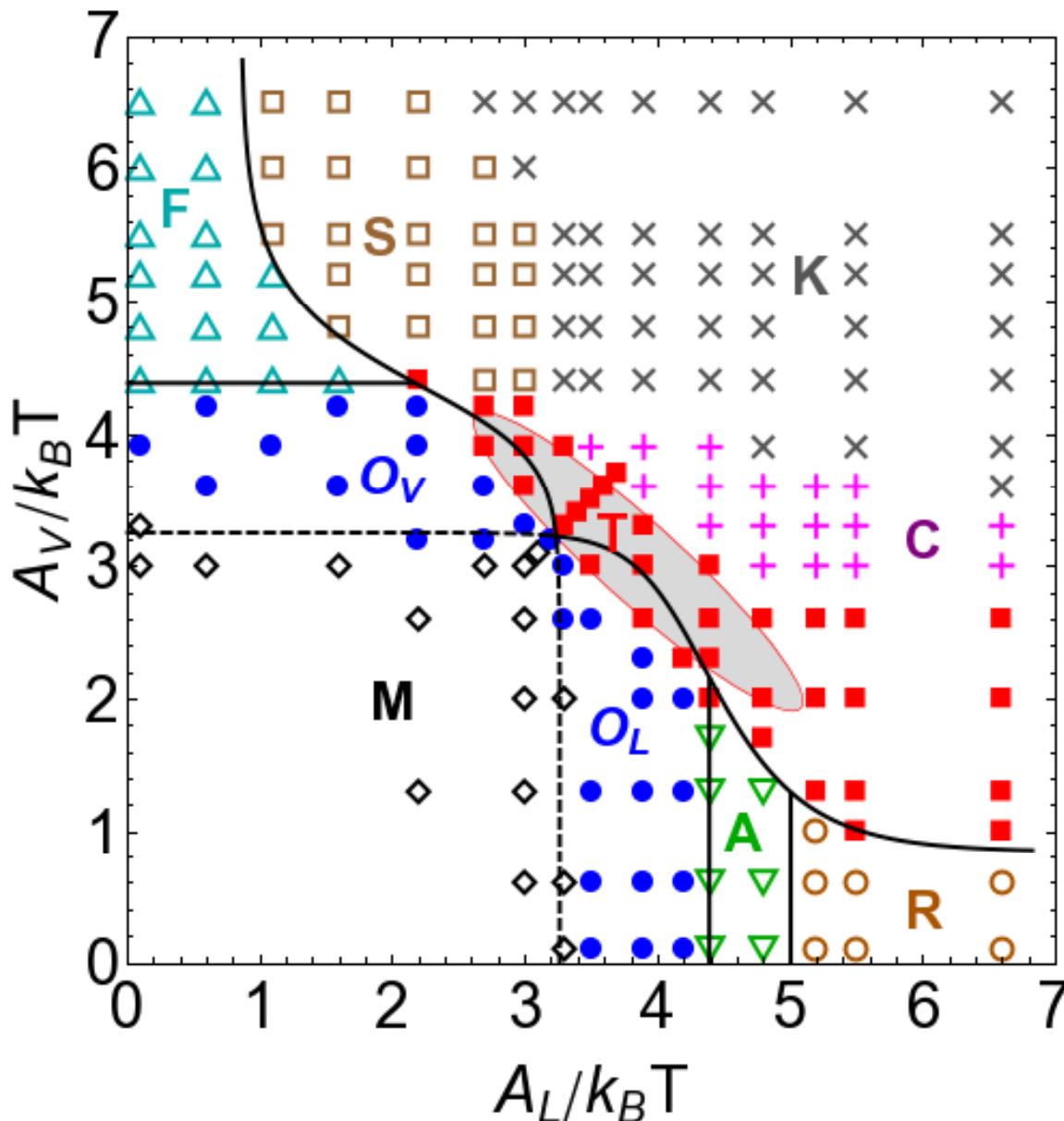
$$g = 4A - 3.4 - 9.6$$

2 attractive sites $\times 2A$

thermal fluctuations

energy barrier

Lattice theory explains structure diagram quite well



- Lattice theory for straight polymerization → formation of filaments/arcs/rings
- Two filaments/rings need to overcome energy barrier $\sim 9.6kT$ to assemble → filaments join to form sheets or rings stack into tubes
- Sheet/cluster states are non-equilibrium structures and outside range of lattice theory

Conclusions

- wedges can self-assemble into tubules
 - model has basic level of features
- see helical structures more than nonhelical
- tubules only formed in a narrow range of interaction strengths → reversibility is crucial
- see rearrangement of monomers within clusters
 - important for defect removal
 - but not disassembly (need solvent?)
- lattice-type theory captures essential features of self-assembly