
Template-based Generic Programming

Applied to Large-scale Multiphysics

Simulation

Roger Pawlowski, Eric Cyr, Patrick Notz, Eric Phipps,

Andrew Salinger, and John Shadid

Sandia National Laboratories

SIAM Conference on Parallel Processing

MS30 Directed Acyclic Graph Approaches for Parallel Scientific Computing

Thursday Feb 16th, 2012

Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energy's National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2012-1207 C SAND2012-1207C

Outline

• Motivation

• Requirements

– Analysis Requirements

– Complexity Requirements

• Solution:

– DAG Implementation

– Template-based Generic Programming

• Examples

• Conclusions

Motivation
Achieving Scalable Predictive Simulations of Complex Highly Nonlinear

Multi-physics PDE Systems

• Multiphysics systems are characterized by a myriad of complex, interacting,

nonlinear multiple time- and length-scale physical mechanisms:

– Dominated by short dynamical time-scales

– Widely separated time-scales (stiff system)

– Evolve a solution on a long time scale relative

to component time scales

– Balance to produce steady-state behavior.

• Our approach:

– Stable and higher-order accurate implicit formulations and discretizations

– Robust, scalable and efficient prec. for fully-coupled Newton-Krylov methods

– Integrate sensitivity and error-estimation to enable UQ capabilities.

e.g. Nuclear Fission / Fusion Reactors; Conventional /Alternate Energy Systems;

High Energy Density Physics; Astrophysics; etc ….

Explicit Methods

Typically requires some

form of Implicit Methods

Complexity in

Multiphysics Simulation

• Complex

interdependent

coupled physics

• Multiple Mathematical

Models

• Multiple Numerical

Formulations

Physics Model

Requirements

Embedded

Analysis

Requirements

Exploring complex

solution spaces

• Optimization

• Uncertainty

Quantification

• Bifurcation analysis

?

• Supporting multiplicity in models and solution techniques often leads to

complex code with complicated logic and fragile software designs!

Flexible, extensible,

maintainable and

EFFICIENT!

What does embedded mean?

• We used to call this intrusive

• Generally anything that requires more of a
simulation code than just running it
– i.e., not black-box or non-intrusive

• Why do this?
– By asking for more, improvements can be made

• Increased efficiency, scalability, robustness

• Greater understanding through deeper analysis

• Model problem

• Direct to steady-state, implicit time-stepping, linear stability analysis

• Steady-state parameter continuation

• Bifurcation analysis

Analysis Requirements (1)

Analysis Requirements (2)

• Steady-state sensitivity analysis

• Transient sensitivity analysis

• Steady-state stochastic problem (for simplicity):

• Stochastic Galerkin method (Ghanem and many, many others…):

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Advantages:

– Many fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:

– Computing SG residual and Jacobian entries in large-scale, production simulation codes

– Solving resulting systems of equations efficiently

Stochastic sparsity Spatial sparsity

Analysis Requirements (3)

Physics Model Requirements

• Changing Models:

– New equation sets

– New material models/source terms

• Arbitrary Precision

• Block Operators for physics-based and block-

aggregate preconditioning

• Integration with Third Party Libraries

Example:

Incomp. flow + Energy Cons.
DOF

Example: Extra Operators for MHD

DOF

• New DOFs require new

derivatives

• New material model requires

new derivatives for ALL

possible equations!

• Can we avoid explosion of

derivative implementations

for different DOFs?

Example: Simplification in 2D

Leads to Change of Variables
DOF

• Reuse MHD

• Added new equation and

DOF

• Can we avoid Explosion of

derivative implementations

for different DOF?

Example: Change of Variables for

Compressible (Conservative) Form
DOF

• Reuse basic equations

• New DOFs

• Can we avoid Explosion of

derivative implementations

for different DOF?

Formulations/Equations of State (HydroMagnetic Thermal Cavity)

Constant Density - Strictly incompressible

Variable density Formulations

Boussinesq Approximation

Low Flow Mach Number Approximation

Anelastic Approximation

Compressible Fluid

Density becomes a degree of freedom!

Changing the models changes the

dependency chain, complicating the

generation of sensitivities

for implicit methods

• Many kinds of quantities required:

– State and parameter derivatives

– Various forms of second derivatives

– polynomial chaos expansions

– …

• Quickly integrate, adapt, and reuse models and equation sets while

supporting requirements

• Incorporating these directly requires significant effort

– Combinatorial explosion of required sensitivities

– Time consuming, error prone

– Gets in the way of physics/model development

• Requires code developers to understand requirements of algorithmic

approaches

– Limits embedded algorithm R&D on complex problems

Challenges

A Solution

• Need a framework that
– Allows simulation code developers to focus on complex physics

development

– Doesn’t make them worry about advanced analysis

– Allows derivatives and other quantities to be easily and efficiently
extracted

– Is extensible to future embedded algorithm requirements

• Directed Acyclic Graph based assembly
– Managers complexities with model dependencies

– Maximize reuse of model code

– Avoid complex switching during assembly

• Template-based generic programming
– Code developers write physics code templated on scalar type

– Operator overloading libraries provide tools to propagate needed
embedded quantities (derivatives, stochastics, etc.)

– Libraries connect these quantities to embedded solver/analysis tools

Lightweight DAG-based

Expression Evaluation
• Toolkit for handling complexity in

Multiphysics

• Decompose a complex problem into a

graph of simple tasks to support rapid

development, separation of concerns and

extensibility.

• Basic Requirements of a graph “node”:

– Generic name (“density”, “viscosity”)

– Declared prerequisites (“temperature”,

“pressure”)

– Evaluation: evaluate()

– Signature definition (scalar, vector, tensor,

…)

• Separation of data (Fields) and kernels

(Expressions) that operate on the data

Navier-Stokes Example

•Graph-based equation

description

– Automated dependency

tracking (Topological sort to

order the evaluations)

– Each node is a point of

extension that can be

swapped out

– Easy to add equations

– Easy to change models

– Easy to test in isolation

– User controlled granularity

– No unique decomposition

•User controlled memory

allocation of Field data

•Multi-core research:

– Spatial decomposition

– Algorithmic decomposition

r
i

fr
i

Template-based Generic

Programming (TBGP)

• Template scalar type in the

assembly process

• New Scalar types that overload

the math operators

• Expression templates

• Derivatives: FAD, RAD

• Stochastic Galerkin: PCE

double Fad<double>

Fad:

Seeding/initializing V

For J:

For Jw:

TBGP Example

void computeF(double* x, double* f)

{

f[0] = 2.0 * x[0] + x[1] * x[1];

f[1] = x[0] * x[0] * x[0] + sin(x[1]);

}

template <typename ScalarT>

void computeF(ScalarT* x, ScalarT* f)

{

f[0] = 2.0 * x[0] + x[1] * x[1];

f[1] = x[0] * x[0] * x[0] + sin(x[1]);

}

void computeJ(double* x, double* J)

{

// J(0,0)

J[0] = 2.0;

// J(0,1)

J[1] = 2.0 * x[1];

// J(1,0)

J[2] = 3.0 * x[0] * x[0];

// J(1,1)

J[3] = cos(x[1]);

}

DFad<double>* x;

DFad<double>* f;

…

computeF(x,f);

Same accuracy as writing analytic derivative:

No differencing error involved!

double* x;

double* f;

…

computeF(x,f);

Generic Programming
(using data types from Trilinos/Sacado: E. Phipps)

Scalar Types

double• Residual

• Jacobian

• Hessian

• Parameter Sensitivities

• Jv

• Stochastic Galerkin Residual

• Stochastic Galerkin Jacobian

Concept: Evaluation Types

DFad<double>

DFad<double>

Sacado::PCE::OrthogPoly<double>

Sacado::Fad::DFad< Sacado::PCE::OrthogPoly<double> >

Field Manager is templated on Evaluation Type

NOTES:

1. Not tied to

double (can do

arbitrary

precision)

2. Not tied to any

one scalar

type can use

multiple scalar

types in any

evaluation

type!

DFad<double>

DFad< DFad<double> >

Galerkin Weak form ignoring boundary terms for

simplicity:

TBGP in Multiphysics

PDE Assembly

PDE Equation:

FEM Basis:

Residual Equation:

Break mesh into

worksets of

elements

Gather solution values and

seed Scalar type

Extract values from

Scalar type and

scatter to global

residual

• Only have to specialize two

expressions for evaluation

type:

• Gather/Seed

• Extract/Scatter

• All other code is reused

• Other code is the

multiphysics equation

sets

• Achieved separation of

concerns!

TBGP + DAG: Global Evaluation

Gather/Seed

Extract/Scatter

Physics/Block Preconditioning
JFNK + Block

Scattering for

Precondiitoning

Rapid Development of New Physics
(Single driver and collection of interchangeable evaluators)

Semiconductor

Drift Diffusion

Multi-phase

Chemically

Reacting Aerosol

NGNP Reactor

Chemicurrent

CFD and

MHD

Transient Sensitivities of Radiation

Damage in Semiconductor Devices

Scaled Sensitivities

Comparison to
FD:

 Sensitivities at
all time points

 More accurate
 More robust
 14x faster!

Hydromagnetic

Rayleigh-Bernard

Parameters:

• Q ~ B0
2 (Chandresekhar number)

• Ra (Rayleigh number)

• Buoyancy driven instability initiates flow at high Ra numbers.

• Increased values of Q delay the onset of flow.

• Domain: 1x20

Ra (fixed Q)

No flow Recirculations

B0 g

Leading Mode is different

for various Q values
• Analytic solution is on an infinite

domain with two bounding

surfaces (top and bottom)

• Multiple modes exist, mostly

differentiated by number of

cells/wavelength.

• Therefore tracking the same

eigenmode does not give the

stability curve!!!

• Periodic BCs will not fix this

issue.

Mode: 20 Cells: Q=100, Ra=4017

Mode: 26 Cells: Q=100, Ra=3757

Q

Ra

Leading mode

is 20 cells

Leading mode

is 26 cells

2000

3000

4000

Flow

No Flow

Problem Description

• 3x3 Rod bundle

• Isothermal

• Fluid: Water
– T: 394K

– Viscosity: 2.32x10-4 Pa

sec

– Density: 924 kg/m3

• Symmetry on sides

• No slip (v=0) on rods

• Inflow on bottom
– 5 m/sec

• Outflow on top:

Geometry
(Complex geometry including mixing vanes)

Solution Profiles

• Sandia Redsky platform, 256-1000 processes

• Oak Ridge Jaguar platform, 1200-9600 processes

• 2nd order BFD time integration

• Linear Lagrange elements (2nd order in space)

Conjugate Heat Transfer

Embedded UQ in Drekar:
Rod to Fluid Heat Transfer

Large-Scale Semiconductor Device Simulations on

IBM Blue Gene Platform

• Generic programming (via AD tools)

is applied at the element level, not

globally.

• Weak scaling to 65k cores and two

billion DOF: Jacobian evaluation via

AD scales!

• Using all four cores per node with

MPI process on each core.

DOE/NNSA

cores DOF Jacobian time

256 7.93m 52.19

1024 31.5m 52.28

4096 126m 52.09

8192 253m 52.82

16384 504m 52.74

32768 1.01b 52.96

65536 2.01b 52.94

Largest run to date:

Solving linear systems of

2 billion unknowns on 147,000

cores

Conclusions

DAG + TBGP =

• We can write very advanced multiphysics

software that is efficient, flexible and

maintainabile but templates are crucial

• Decoupling algorithms from equations is

powerful:

– We don’t write Jacobians anymore - enormous

savings of manpower!

• Generic programming allows:

– Segregation of technologies

– Easily adaptive environment (from SE standpoint)

• Machine precision accuracy of required

quantities is achieved

Trilinos Tools for PDEs

Supporting TBGP
• Intrepid: Tools for discretizations of PDEs

– Basis functions, quadrature rules, …

– All Intrepid classes/functions templated on scalar type

• Derivatives w.r.t. DOFs

• Derivatives w.r.t. coordinates

• Phalanx: Local field evaluation kernels
– DAG for multiphysics complexity

– Explicitly manages fields/evaluators for different scalar types

• Shards
– Templated multi-dimensional array

• Stokhos
– PCE classes, overloaded operators

– Simultaneous ensemble propagation classes, overloaded operators

– Tools and data structures for forming, solving embedded SG systems

• Sacado
– Parameter library – tools to manage model parameters

– Template manager – tools to manage instantiations of a template class on multiple scalar
types

– MPL – simple implementation of some metaprogramming constructs

Thank you!

Domain Model for Multiphysics

A Theory Manual for

Multiphysics Code

Coupling in LIME,

R. Pawlowski, R.

Bartlett, R. Schmidt,

R. Hooper, and N.

Belcourt,

SAND2011-2195 State (DOF)
Set of parameters

Time
Residual

Response Function

Jacobian-Free

Newton-Krylov (JFNK)

Iterative Linear Solver – GMRES

Krylov Subspace of the form:

In the inner iteration of the linear

solve, we only need the action of the

Jacobian on a vector:

Advantages:

•Same as Newton, but no

Jacobian is required!

•Residual Based!

Disadvantage:

•Accuracy/convergence

issues due to scalar

perturbation factor:

•Solution vector scaling

is criticalOnly require an explicit matrix for

preconditioning – does NOT have to be

exact!

• JFNK (FD)

• JFNK (AD)

• Machine precision accurate

• Ex: Solution varies 10^12 over domain

• Explicit Jacobian (AD generated)

• Machine precision accurate

• Complexity ideas allow for storing

individual operators for

preconditioning!

• Larger memory requirements

Example: JFNK
(2D Diffusion/Rxn System: 2 eqns)

Relative times

F(x) 1.00

J(x) 4.45

Jv (AD) 1.53

Mv (matvec) 0.06

JFNK (AD)

Explicit J (AD)

JFNK (AD)

Explicit J (AD)

Example: Modify for Turbulence

DOF

over bar

denotes spatial

filtering in LES

LES WALE

Model

Complexity in Multiphysics

Simulation Environments
Physics Model Complexity

• Solving multiphysics PDE systems generates complexity:

– Complex interdependent coupled physics

– Multiple proposed mathematical models

– Different numerical formulations (e.g. space-time discretizations)

– Exploring complex solution spaces (steady-state, transient, stability,

bifurcation, design optimization, uncertainty quantification)

• Supporting multiplicity in models and solution techniques often leads to

complex code with complicated logic and fragile software designs

Solution Algorithm Complexity

• From implicit forward solves to analyzing complex solution spaces:

– Simultaneous analysis and design adds requirements

– Do not burden analysts/physics experts with analysis algorithm

requirements: i.e. programming sensitivities for implicit solvers,

optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!

Multi-level Parallelism

• Early evidence suggests mpi+threads

• Option 1: Each core has full graph

Each core/thread evaluates the full graph over a subset of cells/elements

• Option 2: Single

graph with multiple

threads (Task

Scheduling)

– Use a priority

queue to start

critical/expensive

nodes first

– Better cache

utilization

