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Motivation
Achieving Scalable Predictive Simulations of Complex Highly Nonlinear 

Multi-physics PDE Systems

• Multiphysics systems are characterized by a myriad of complex, interacting, 

nonlinear multiple time- and length-scale physical mechanisms:

– Dominated by short dynamical time-scales

– Widely separated time-scales (stiff system)

– Evolve a solution on a long time scale relative

to component time scales

– Balance to produce steady-state behavior. 

• Our approach:

– Stable and higher-order accurate implicit formulations and discretizations

– Robust, scalable and efficient prec. for fully-coupled Newton-Krylov methods

– Integrate sensitivity and error-estimation to enable UQ capabilities.

e.g. Nuclear Fission / Fusion Reactors; Conventional /Alternate Energy Systems; 

High Energy Density Physics; Astrophysics; etc ….

Explicit Methods

Typically requires some 

form of Implicit Methods



Complexity in 

Multiphysics Simulation

• Complex 

interdependent 

coupled physics

• Multiple Mathematical 

Models

• Multiple Numerical 

Formulations

Physics Model

Requirements

Embedded

Analysis 

Requirements

Exploring complex 

solution spaces

• Optimization

• Uncertainty 

Quantification

• Bifurcation analysis

?

• Supporting multiplicity in models and solution techniques often leads to 

complex code with complicated logic and fragile software designs!

Flexible, extensible, 

maintainable and 

EFFICIENT!



What does embedded mean?

• We used to call this intrusive

• Generally anything that requires more of a 
simulation code than just running it
– i.e., not black-box or non-intrusive

• Why do this?
– By asking for more, improvements can be made

• Increased efficiency, scalability, robustness

• Greater understanding through deeper analysis



• Model problem

• Direct to steady-state, implicit time-stepping, linear stability analysis

• Steady-state parameter continuation

• Bifurcation analysis

Analysis Requirements (1)



Analysis Requirements (2)

• Steady-state sensitivity analysis

• Transient sensitivity analysis



• Steady-state stochastic problem (for simplicity):

• Stochastic Galerkin method (Ghanem and many, many others…):

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Advantages:

– Many fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:

– Computing SG residual and Jacobian entries in large-scale, production simulation codes

– Solving resulting systems of equations efficiently

Stochastic sparsity Spatial sparsity

Analysis Requirements (3)



Physics Model Requirements

• Changing Models:

– New equation sets

– New material models/source terms

• Arbitrary Precision

• Block Operators for physics-based and block-

aggregate preconditioning

• Integration with Third Party Libraries



Example: 

Incomp. flow + Energy Cons.
DOF



Example: Extra Operators for MHD

DOF

• New DOFs require new 

derivatives

• New material model requires 

new derivatives for ALL 

possible equations!

• Can we avoid explosion of 

derivative implementations 

for different DOFs?



Example: Simplification in 2D 

Leads to Change of Variables
DOF

• Reuse MHD

• Added new equation and 

DOF

• Can we avoid Explosion of 

derivative implementations 

for different DOF?



Example: Change of Variables for 

Compressible (Conservative) Form
DOF

• Reuse basic equations

• New DOFs

• Can we avoid Explosion of 

derivative implementations 

for different DOF?



Formulations/Equations of State (HydroMagnetic Thermal Cavity)

Constant Density - Strictly incompressible

Variable density Formulations 

Boussinesq Approximation

Low Flow Mach Number Approximation

Anelastic Approximation

Compressible Fluid

Density becomes a degree of freedom!

Changing the models changes the 

dependency chain, complicating  the 

generation of sensitivities

for implicit methods



• Many kinds of quantities required: 

– State and parameter derivatives

– Various forms of second derivatives

– polynomial chaos expansions

– …

• Quickly integrate, adapt, and reuse models and equation sets while 

supporting requirements

• Incorporating these directly requires significant effort

– Combinatorial explosion of required sensitivities

– Time consuming, error prone

– Gets in the way of physics/model development

• Requires code developers to understand requirements of algorithmic 

approaches

– Limits embedded algorithm R&D on complex problems

Challenges



A Solution

• Need a framework that 
– Allows simulation code developers to focus on complex physics 

development

– Doesn’t make them worry about advanced analysis

– Allows derivatives and other quantities to be easily and efficiently 
extracted

– Is extensible to future embedded algorithm requirements

• Directed Acyclic Graph based assembly 
– Managers complexities with model dependencies

– Maximize reuse of model code

– Avoid complex switching during assembly

• Template-based generic programming
– Code developers write physics code templated on scalar type

– Operator overloading libraries provide tools to propagate needed 
embedded quantities (derivatives, stochastics, etc.)

– Libraries connect these quantities to embedded solver/analysis tools



Lightweight DAG-based 

Expression Evaluation
• Toolkit for handling complexity in 

Multiphysics

• Decompose a complex problem into a 

graph of simple tasks to support rapid 

development, separation of concerns and 

extensibility.

• Basic Requirements of a graph “node”:

– Generic name (“density”, “viscosity”)

– Declared prerequisites (“temperature”, 

“pressure”)

– Evaluation: evaluate()

– Signature definition (scalar, vector, tensor, 

… )

• Separation of data (Fields) and kernels 

(Expressions) that operate on the data



Navier-Stokes Example

•Graph-based equation 

description

– Automated dependency 

tracking (Topological sort to 

order the evaluations)

– Each node is a point of 

extension that can be 

swapped out

– Easy to add equations

– Easy to change models

– Easy to test in isolation

– User controlled granularity

– No unique decomposition

•User controlled memory 

allocation of Field data

•Multi-core research:

– Spatial decomposition

– Algorithmic decomposition

r
i

fr
i



Template-based Generic 

Programming (TBGP)

• Template scalar type in the 

assembly process

• New Scalar types that overload 

the math operators

• Expression templates

• Derivatives: FAD, RAD

• Stochastic Galerkin: PCE

double Fad<double>

Fad:

Seeding/initializing V

For J:

For Jw:



TBGP Example

void computeF(double* x, double* f) 

{ 

f[0] = 2.0 * x[0] + x[1] * x[1]; 

f[1] = x[0] * x[0] * x[0] + sin(x[1]); 

}

template <typename ScalarT> 

void computeF(ScalarT* x, ScalarT* f) 

{ 

f[0] = 2.0 * x[0] + x[1] * x[1];

f[1] = x[0] * x[0] * x[0] + sin(x[1]); 

} 

void computeJ(double* x, double* J) 

{ 

// J(0,0) 

J[0] = 2.0; 

// J(0,1) 

J[1] = 2.0 * x[1];

// J(1,0) 

J[2] = 3.0 * x[0] * x[0]; 

// J(1,1) 

J[3] = cos(x[1]); 

}

DFad<double>* x;

DFad<double>* f;

…

computeF(x,f);

Same accuracy as writing analytic derivative: 

No differencing error involved!

double* x;

double* f;

…

computeF(x,f);



Generic Programming
(using data types from Trilinos/Sacado: E. Phipps)

Scalar Types

double• Residual

• Jacobian

• Hessian

• Parameter Sensitivities

• Jv

• Stochastic Galerkin Residual

• Stochastic Galerkin Jacobian

Concept: Evaluation Types

DFad<double>

DFad<double>

Sacado::PCE::OrthogPoly<double> 

Sacado::Fad::DFad< Sacado::PCE::OrthogPoly<double> > 

Field Manager is templated on Evaluation Type

NOTES: 

1. Not tied to 

double (can do 

arbitrary 

precision)

2. Not tied to any 

one scalar 

type can use 

multiple scalar 

types in any 

evaluation 

type! 

DFad<double>

DFad< DFad<double> >



Galerkin Weak form ignoring boundary terms for 

simplicity:

TBGP in Multiphysics

PDE Assembly

PDE Equation:

FEM Basis:

Residual Equation:



Break mesh into 

worksets of 

elements

Gather solution values and 

seed Scalar type

Extract values from 

Scalar type and 

scatter to global 

residual

• Only have to specialize two 

expressions for evaluation 

type:

• Gather/Seed

• Extract/Scatter

• All other code is reused

• Other code is the 

multiphysics equation 

sets

• Achieved separation of 

concerns!

TBGP + DAG: Global Evaluation

Gather/Seed

Extract/Scatter



Physics/Block Preconditioning
JFNK + Block 

Scattering for 

Precondiitoning



Rapid Development of New Physics
(Single driver and collection of interchangeable evaluators)

Semiconductor 

Drift Diffusion

Multi-phase 

Chemically 

Reacting Aerosol 

NGNP Reactor

Chemicurrent

CFD and 

MHD



Transient Sensitivities of Radiation 

Damage in Semiconductor Devices

Scaled Sensitivities

Comparison to 
FD:

 Sensitivities at 
all time points

 More accurate
 More robust
 14x faster!



Hydromagnetic 

Rayleigh-Bernard

Parameters: 

• Q ~ B0
2 (Chandresekhar number)

• Ra (Rayleigh number)

• Buoyancy driven instability initiates flow at high Ra numbers.

• Increased values of Q delay the onset of flow. 

• Domain: 1x20

Ra (fixed Q)

No flow Recirculations

B0 g



Leading Mode is different 

for various Q values
• Analytic solution is on an infinite 

domain with two bounding 

surfaces (top and bottom)

• Multiple modes exist, mostly 

differentiated by number of 

cells/wavelength.

• Therefore tracking the same 

eigenmode does not give the 

stability curve!!!

• Periodic BCs will not fix this 

issue.

Mode: 20 Cells: Q=100, Ra=4017

Mode: 26 Cells: Q=100, Ra=3757

Q

Ra

Leading mode

is 20 cells

Leading mode

is 26 cells

2000

3000

4000

Flow

No Flow



Problem Description

• 3x3 Rod bundle

• Isothermal

• Fluid: Water 
– T: 394K

– Viscosity: 2.32x10-4 Pa 

sec

– Density: 924 kg/m3

• Symmetry on sides

• No slip (v=0) on rods

• Inflow on bottom
– 5 m/sec

• Outflow on top:



Geometry
(Complex geometry including mixing vanes)



Solution Profiles

• Sandia Redsky platform, 256-1000 processes

• Oak Ridge Jaguar platform, 1200-9600 processes

• 2nd order BFD time integration

• Linear Lagrange elements (2nd order in space)



Conjugate Heat Transfer



Embedded UQ in Drekar: 
Rod to Fluid Heat Transfer



Large-Scale Semiconductor Device Simulations on 

IBM Blue Gene Platform

• Generic programming (via AD tools) 

is applied at the element level, not 

globally.

• Weak scaling to 65k cores and two 

billion DOF: Jacobian evaluation via 

AD scales!

• Using all four cores per node with 

MPI process on each core.

DOE/NNSA

cores DOF Jacobian time

256 7.93m 52.19

1024 31.5m 52.28

4096 126m 52.09

8192 253m 52.82

16384 504m 52.74

32768 1.01b 52.96

65536 2.01b 52.94

Largest run to date:

Solving linear systems of 

2 billion unknowns on 147,000 

cores



Conclusions

DAG + TBGP =

• We can write very advanced multiphysics

software that is efficient, flexible and 

maintainabile but templates are crucial

• Decoupling algorithms from equations is 

powerful:

– We don’t write Jacobians anymore - enormous 

savings of manpower!

• Generic programming allows:

– Segregation of technologies

– Easily adaptive environment (from SE standpoint)

• Machine precision accuracy of required 

quantities is achieved



Trilinos Tools for PDEs 

Supporting TBGP
• Intrepid:  Tools for discretizations of PDEs

– Basis functions, quadrature rules, …

– All Intrepid classes/functions templated on scalar type

• Derivatives w.r.t. DOFs

• Derivatives w.r.t. coordinates

• Phalanx:  Local field evaluation kernels
– DAG for multiphysics complexity

– Explicitly manages fields/evaluators for different scalar types

• Shards
– Templated multi-dimensional array

• Stokhos
– PCE classes, overloaded operators

– Simultaneous ensemble propagation classes, overloaded operators

– Tools and data structures for forming, solving embedded SG systems

• Sacado
– Parameter library – tools to manage model parameters

– Template manager – tools to manage instantiations of a template class on multiple scalar 
types

– MPL – simple implementation of some metaprogramming constructs



Thank you!



Domain Model for Multiphysics

A Theory Manual for 

Multiphysics Code 

Coupling in LIME,

R. Pawlowski, R. 

Bartlett, R. Schmidt, 

R. Hooper, and N. 

Belcourt, 

SAND2011-2195 State (DOF)
Set of parameters

Time
Residual

Response Function



Jacobian-Free 

Newton-Krylov (JFNK)

Iterative Linear Solver – GMRES

Krylov Subspace of the form:

In the inner iteration of the linear 

solve, we only need the action of the 

Jacobian on a vector:

Advantages:

•Same as Newton, but no 

Jacobian is required!

•Residual Based!

Disadvantage:

•Accuracy/convergence 

issues due to scalar 

perturbation factor:

•Solution vector scaling 

is criticalOnly require an explicit matrix for 

preconditioning – does NOT have to be 

exact!



• JFNK (FD)

• JFNK (AD)

• Machine precision accurate

• Ex: Solution varies 10^12 over domain

• Explicit Jacobian (AD generated)

• Machine precision accurate

• Complexity ideas allow for storing 

individual operators for 

preconditioning!

• Larger memory requirements

Example: JFNK
(2D Diffusion/Rxn System: 2 eqns) 

Relative times

F(x) 1.00

J(x) 4.45

Jv (AD) 1.53

Mv (matvec) 0.06

JFNK (AD)

Explicit J (AD)

JFNK (AD)

Explicit J (AD)



Example: Modify for Turbulence

DOF

over bar 

denotes spatial 

filtering in LES

LES WALE 

Model



Complexity in Multiphysics

Simulation Environments
Physics Model Complexity

• Solving multiphysics PDE systems generates complexity:

– Complex interdependent coupled physics

– Multiple proposed mathematical models

– Different numerical formulations (e.g. space-time discretizations)

– Exploring complex solution spaces (steady-state, transient, stability, 

bifurcation, design optimization, uncertainty quantification)

• Supporting multiplicity in models and solution techniques often leads to 

complex code with complicated logic and fragile software designs

Solution Algorithm Complexity

• From implicit forward solves to analyzing complex solution spaces:

– Simultaneous analysis and design adds requirements

– Do not burden analysts/physics experts with analysis algorithm 

requirements: i.e. programming sensitivities for implicit solvers, 

optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!



Multi-level Parallelism

• Early evidence suggests mpi+threads

• Option 1: Each core has full graph

Each core/thread evaluates the full graph over a subset of cells/elements

• Option 2: Single 

graph with multiple 

threads (Task 

Scheduling)

– Use a priority 

queue to start 

critical/expensive 

nodes first

– Better cache 

utilization


