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We are working toward the evaluation of a new

Magnetized Liner Inertial Fusion (MagLIF)* concept
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1. A10-50 T axial magnetic field (B,) is —{>-umemn
applied to inhibit thermal conduction losses
and to enhance alpha particle deposition
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2. ZBL preheats the fuel to fuel
~100-250 eV to reduce the
required compression to
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3. Z drive current and By field implode the liner -
(via z-pinch) at 50-100 km/s, compressing the
fuel and B, field by factors of 1000

With DT fuel, simulations indicate scientific breakeven may be possible on Z
(fusion energy out = energy deposited in fusion fuel)

*S.A. Slutz et al., PoP 17, 056303 (2010). S. A. Slutz and R. A. Vesey, PRL 108, 025003 (2012).



Description of semi-analytic model: )
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Description of semi-analytic model: ) e
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This semi-analytic model captures the general 1D 7
behavior presented in the original 2010 MagLIF paper:
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This semi-analytic model captures the general 1D 7
behavior presented in the original 2010 MagLIF paper:
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This semi-analytic model can be used to rapidly
explore the parameter space of MagLIF:

Preheat Energy, Eph [kJ/cm]
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This semi-analytic model can be used to rapidly
explore the parameter space of MagLIF, however:

Preheat Energy, Eph [kJ/cm]

LASNEX contour
plots courtesy of
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This semi-analytic model can be used to rapidly 7
explore the parameter space of MagLIF, however:
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This semi-analytic model can be used to rapidly 7
explore the parameter space of MagLIF, however:
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Summary & Conclusions ) e,
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=  The development of this semi-analytic model has been a useful and
insightful exercise

* Led to the realization that bremsstrahlung losses are significantly reduced when only a
fraction of the fuel is preheated (e.g., from r=0 to r=r /2 uniformly) as opposed to
heating all of the fuel uniformly; this is due to blast wave redistribution of fuel mass,
which significantly affects the radial temperature and density profiles within the fuel

= Led to a better understanding of electron and ion conductivity fluxes radially with the
fuel, and the handoff from ion conductivity to electron conductivity near the liner wall

= Multiple liner shells to obtain reasonable CRs
= Parameter scans using this model illustrate that using the preheat energy presently
available at the Z facility will be risky at first, but more robust solutions should be
possible within the next three years, as the ZBL laser energy is increased from ~2 kJ to
~6 kJ
= This model’s accessible physics and fast run times (~20
seconds/simulation) is a useful pedagogical tool, especially for students,

experimentalists, and researchers interested in MagLIF

=  We hope to publish and distribute this model to those who may be
interested
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The Z pulsed-power facility combines a compact MJ-class St
target physics platform (the Z accelerator) with a TW-class () .
laser (ZBL)
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MagLIF Timing Overview

~ 100-ns implosion times
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~ adiabatic fuel compression (thus preheating the fuel is necessary)

~ 5-keV fuel stagnation temperatures

~ 1-g/cc fuel stagnation densities
~ 5-Gbar fuel stagnation pressures

MagLIF Point Design (Reproducing Slutz 2010 PoP Fig. 4)
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Preheat is necessary for the adiabatic
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compression and heating of MagLIF fuel
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MagLlIF Point Design (Reproducing Slutz 2010 PoP Fig. 4)
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Typically for ICF (e.g., NIF), faster implosions shock-heat the fuel, not so for MagLIF
Magnetization is used to keep the preheated fuel from cooling off during the implosion



This semi-analytic model captures the general 1D ) s,
behavior presented in the original 2010 MagLIF paper:
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This semi-analytic model captures the general 1D ) s,
behavior presented in the original 2010 MagLIF paper:
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This semi-analytic model captures the general 1D 7
behavior presented in the original 2010 MagLIF paper:
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2D simulations of MagLIF suggest an optimum at 7 i
an aspect ratio (AR) of 6*
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* S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).



Radiographs at a convergence ratio of ~5 show
remarkably good stability for inner liner surface

Note: MagLIF requires final compression

to on-axis rod

2D Simulation from
S. A. Slutz, et al., PoP (2010)

Experiment*
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* R. D. McBride et al., Phys. Plasmas 20, 056309 (2013).



