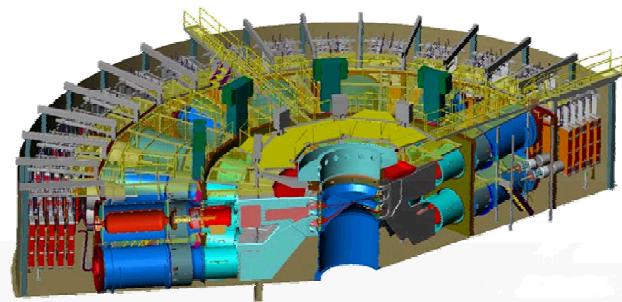


High-Pressure Strength Determination via Quasi-Elastic Optimization



Z Machine

Justin Brown

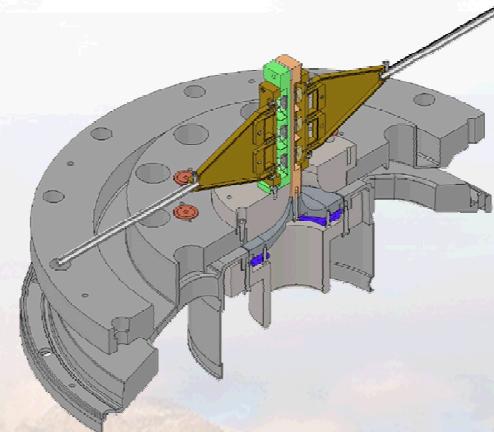
Jim Asay

Tracy Vogler

Sandia National Laboratories

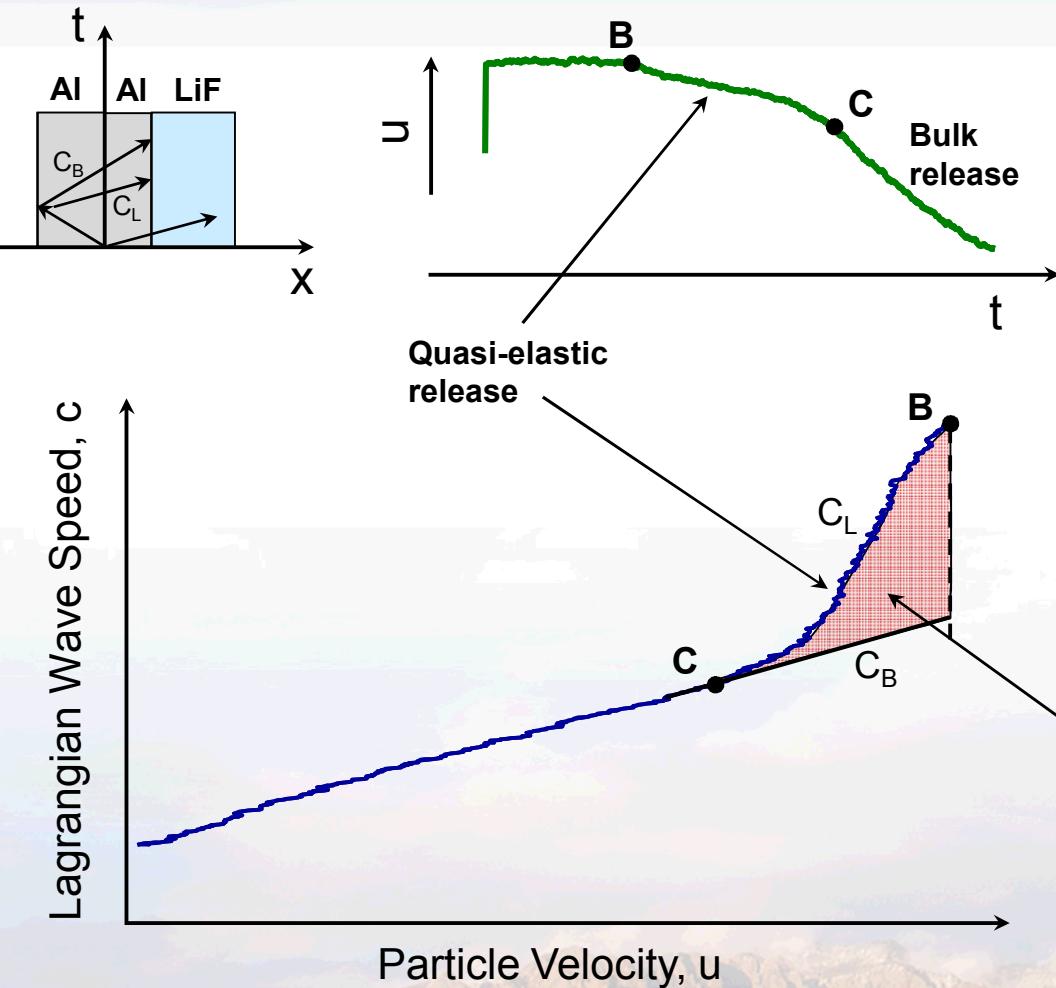
**APS March Meeting
Boston, MA**

February 28, 2012



Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Measured unloading wave velocities may be used to estimate the strength



Assumptions

- Uniaxial strain, elastic-plastic

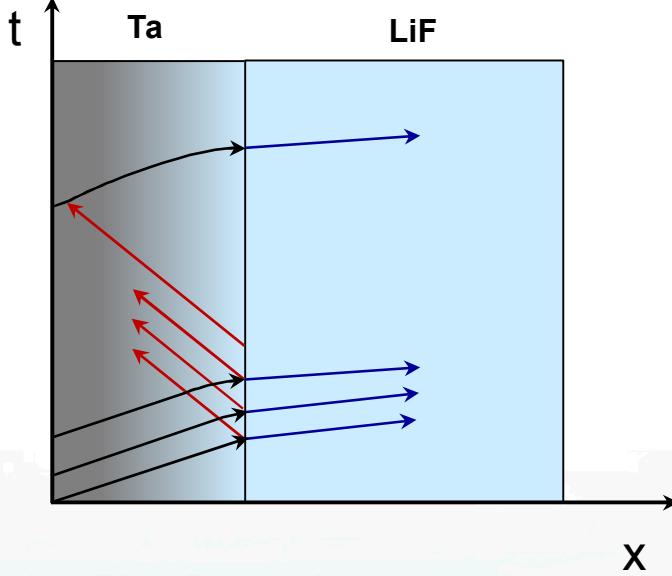
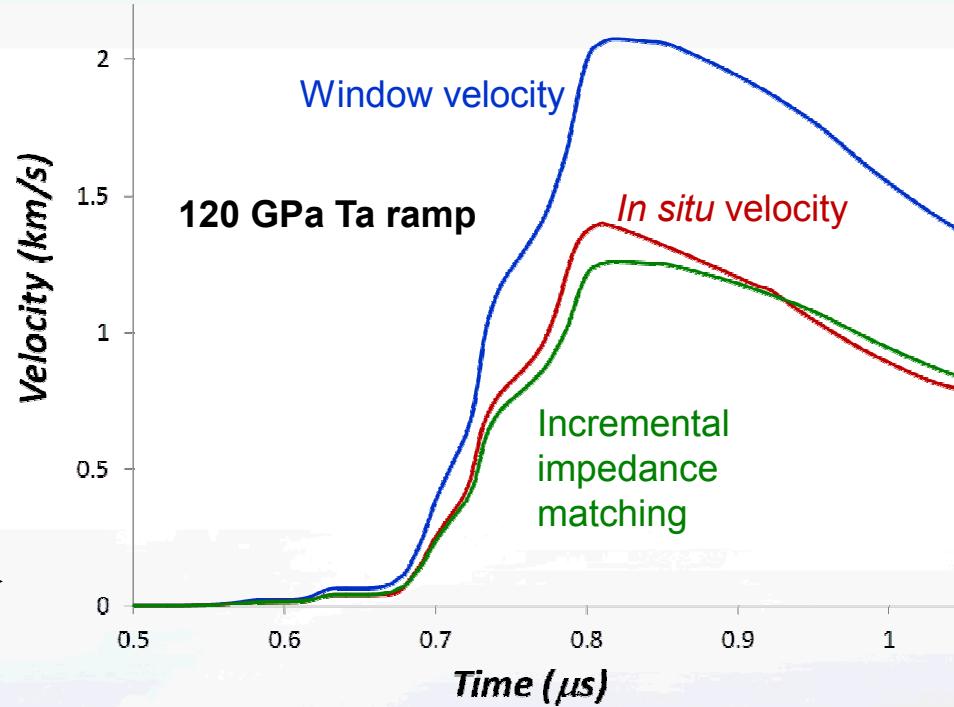
$$\sigma(\varepsilon) = P(\varepsilon) + \frac{4}{3}\tau(\varepsilon)$$

$$\frac{d\tau}{d\varepsilon} = \frac{3}{4}\rho_0 [c_{\text{exp}}^2 - c_B^2]$$

- Rate independent response
- Von-Mises yield surface
- Flow strength determined from quasi-elastic unloading

$$Y = 2\tau = \frac{3}{4}\rho_0 \int [c^2 - c_B^2] \frac{du}{c}$$

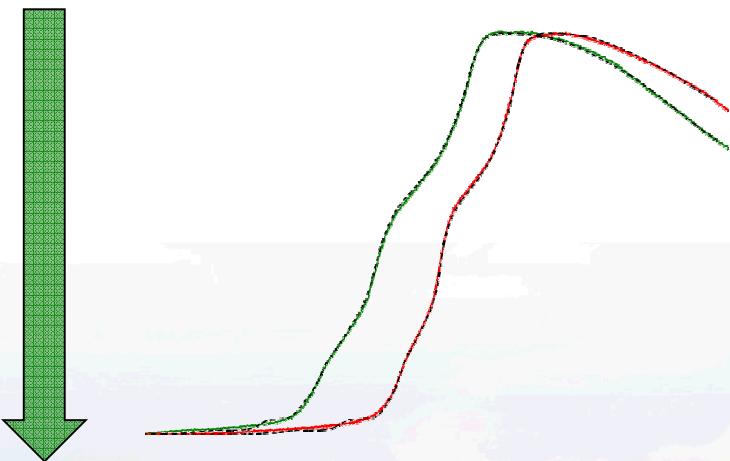
Window effects on ramp loading



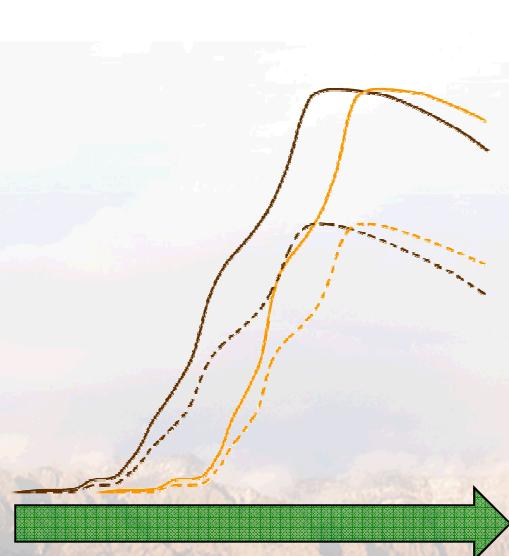
- Poor impedance match is difficult to account for
 - Release waves are constantly generated at the window interface which interact with the incoming ramp
 - Non-simple waves
 - Produces a non-uniform stress state in the sample
 - Incremental impedance matching can be a poor approximation (for ramp waves), particularly at higher stresses

Strategy for removing window effects

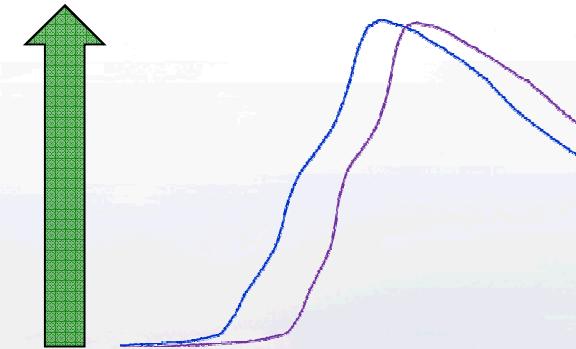
Perform optimized simulations until a good match of the experiment is obtained:
Laslo (1-D wave dynamics with MHD) + Dakota (optimization package)



Calculate the *in situ* response:
what the waveform at each
location would have looked like if
the window was replaced by the
sample

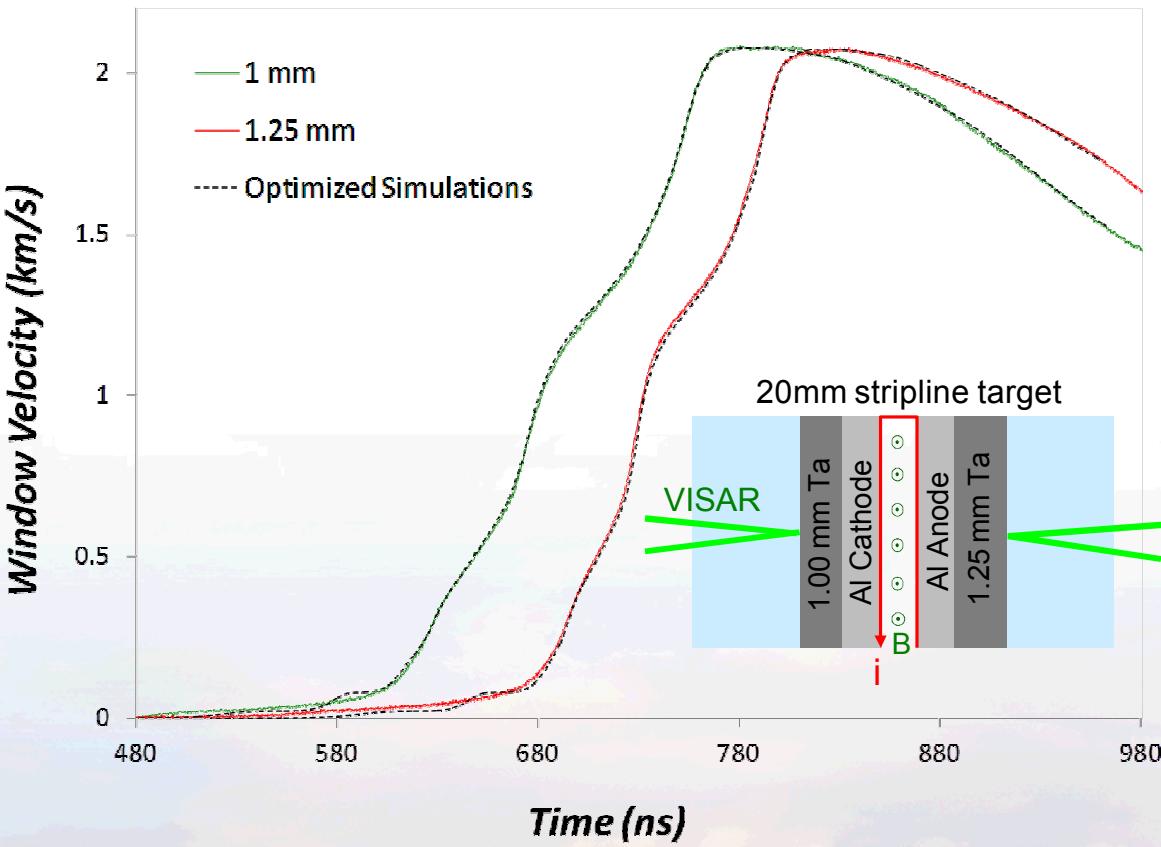


Perform Lagrangian analysis and calculate the strength



Calculate a transfer function (mapping) and apply to experimental data

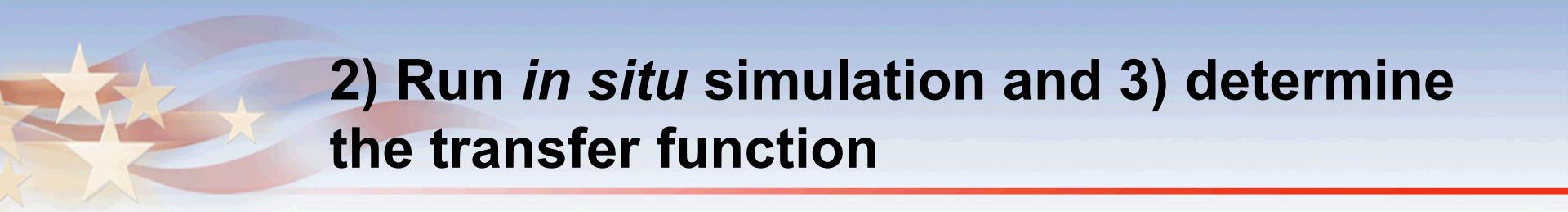
1) Optimized simulations



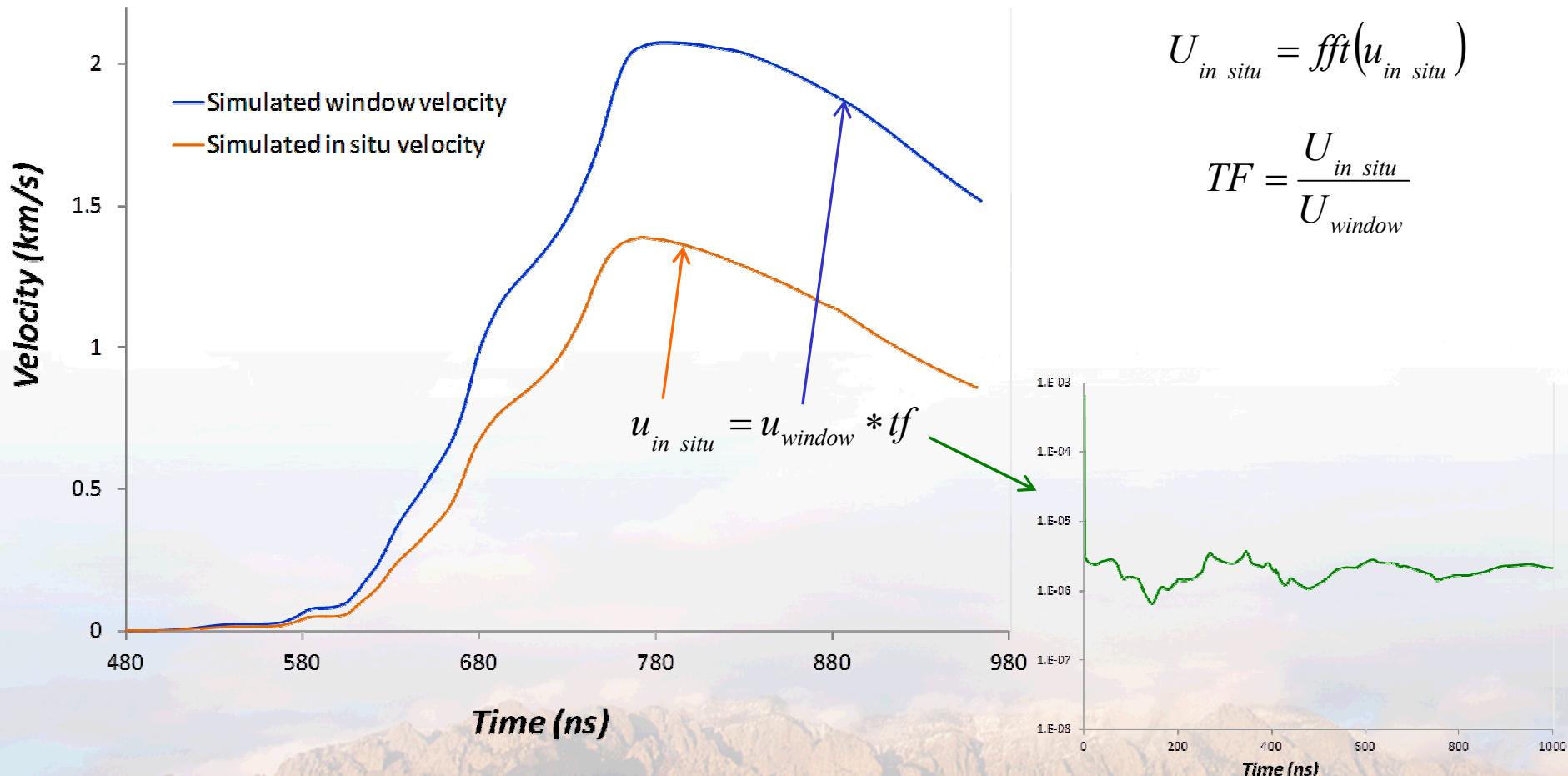
- **50 control points to define the 1-D current**
 - Interpolation scheme coupled with low pass filter
- **Independent time shifts of up to 0.5 ns**
- **Mie-Gruneisen EOS**
 - Small changes to c_0 and s
- **Quasi-elastic strength model**
 - Rate-independent Steinberg-Guinan with linear decay of the shear modulus

$$Y = Y_0 [1 + \beta(\varepsilon + \varepsilon_i)]^n \left[1 + A \frac{P}{\eta^{1/3}} + B(T - 300) \right]$$

$$G_{eff} = G \left(1 - \frac{\varepsilon - \varepsilon_m}{\varepsilon_m - \varepsilon_t} \right)$$

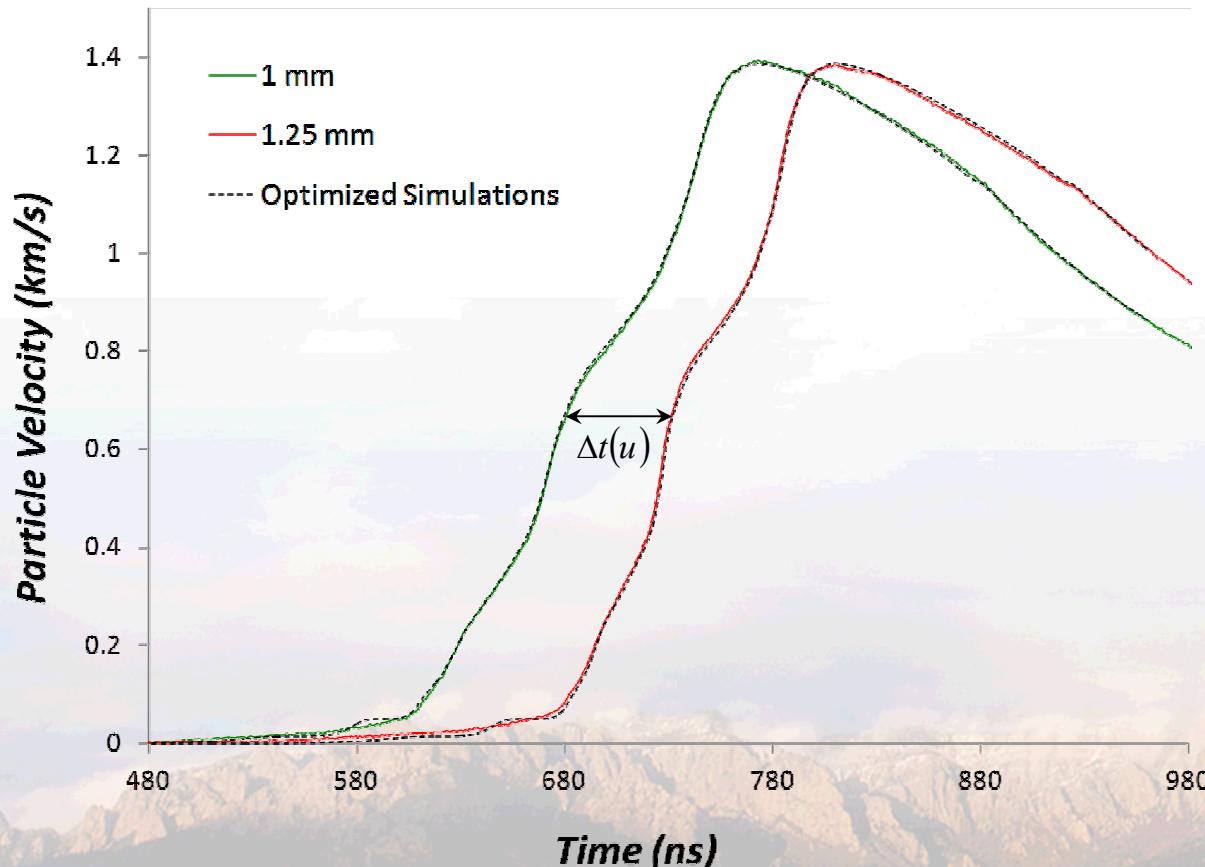


2) Run *in situ* simulation and 3) determine the transfer function



4) Use the transfer function to determine the *in situ* experimental profiles

- Features not captured in the optimized simulations are transferred through to the *in situ* profiles
 - Can now perform standard Lagrangian analysis



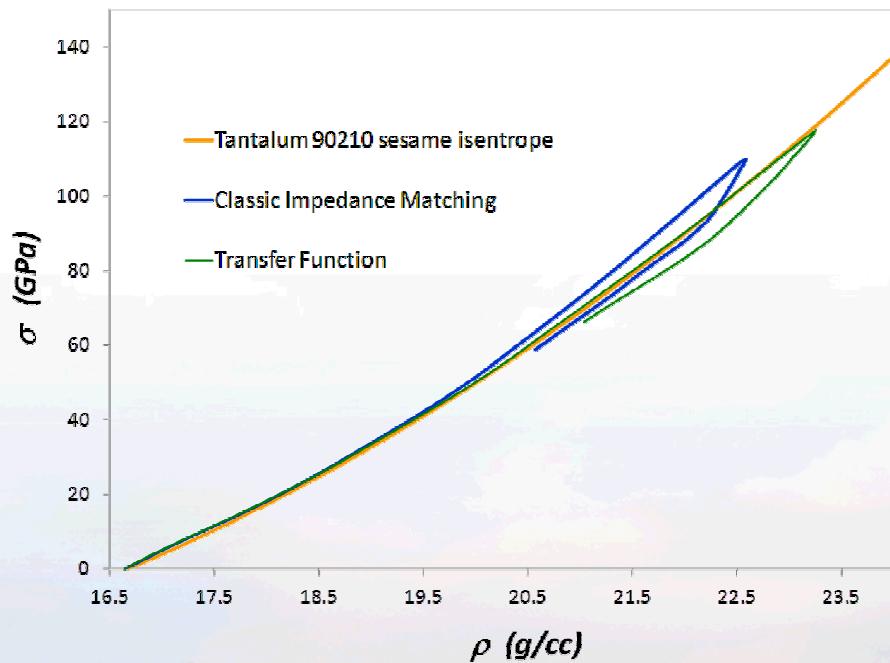
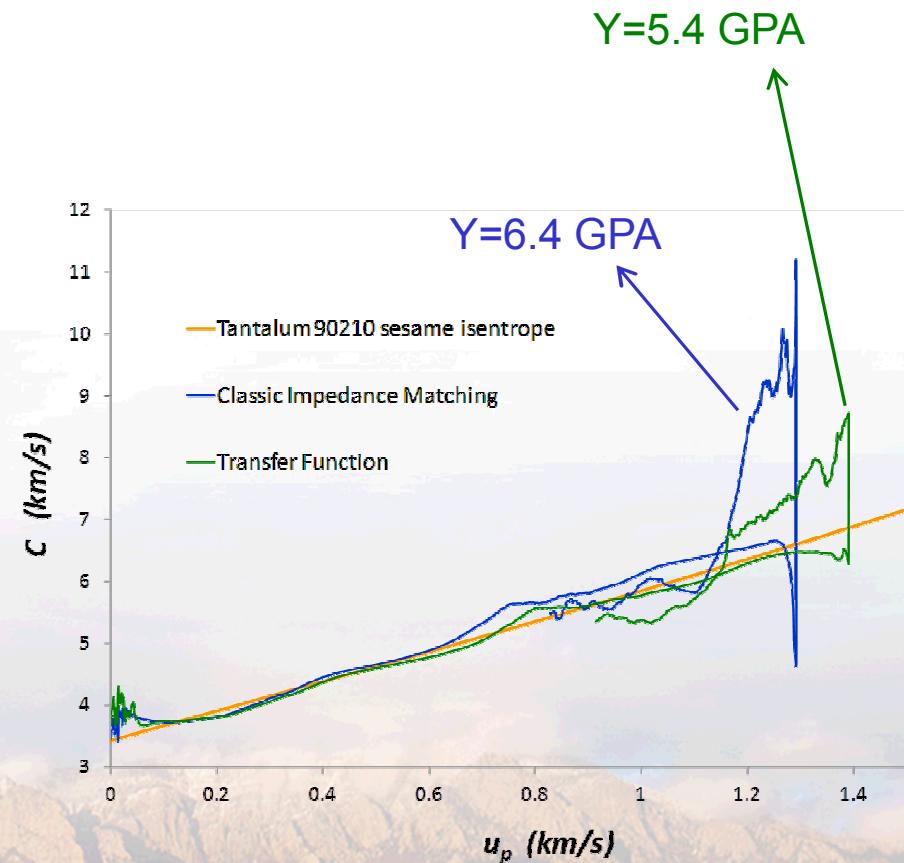
$$c(u) = \frac{\Delta x}{\Delta t(u)}$$

$$d\sigma_x = \rho_0 c d u_p$$

$$d\varepsilon_x = \frac{c}{d u_p}$$

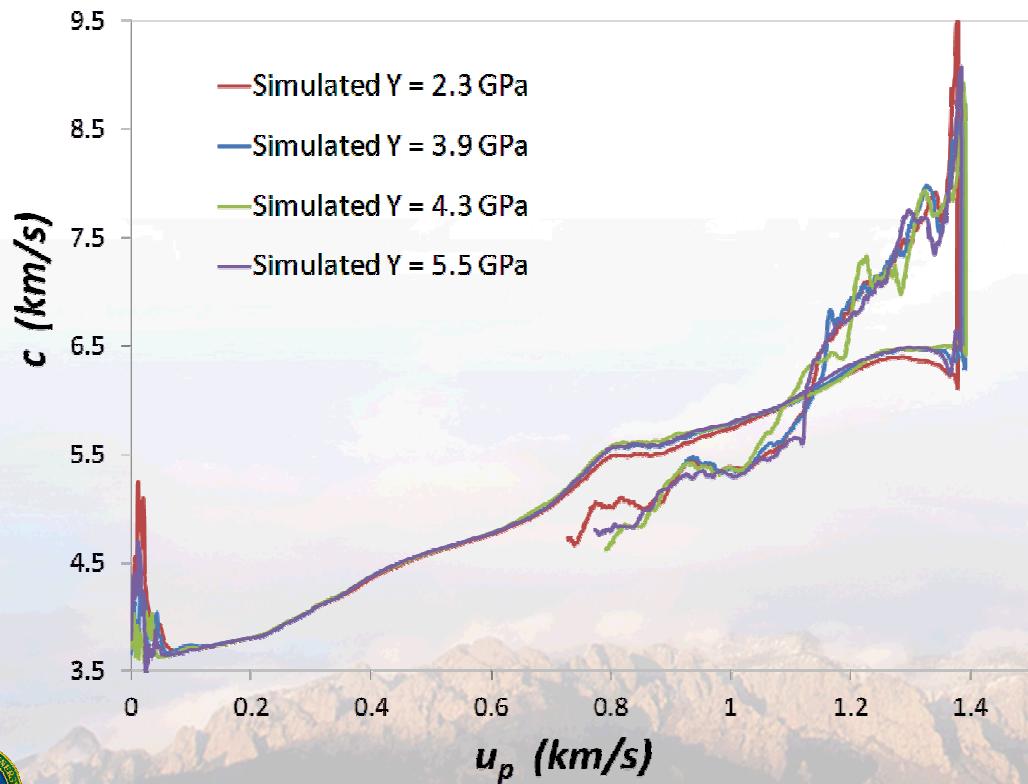
Z1904 Results

- Results are in good agreement with the tabular isentrope
 - Classic impedance matching diverges at ~ 50 GPa



Analysis is model independent

- As long as the optimized simulations are “close”, the experimental data dictates the response
 - Varying the strength used in the optimizations results in fits which are not as good, but the end result is nominally the same

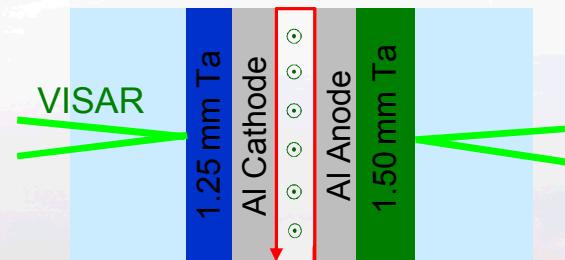


Mean Y :
5.3 GPa

Standard Deviation:
0.2 GPa (4%)

Conclusions and future work

- Transfer function approach appears to be a robust methodology for accurately accounting for window effects in ramp experiments
 - Should provide high fidelity strength estimates (5%?)
- Next generation of experiments on tantalum
 - Generate flat top pulses to eliminate attenuation
 - Experiments between 50 – 200 GPa
 - Avoid corruption of the unload from the initial reflection off of the window interface (reverberation)
- Quantify uncertainties
 - Monte Carlo simulations



Additional Slides

Quasi-elastic strength model

- Rate-independent Steinberg-Guinan quasi-elastic strength model

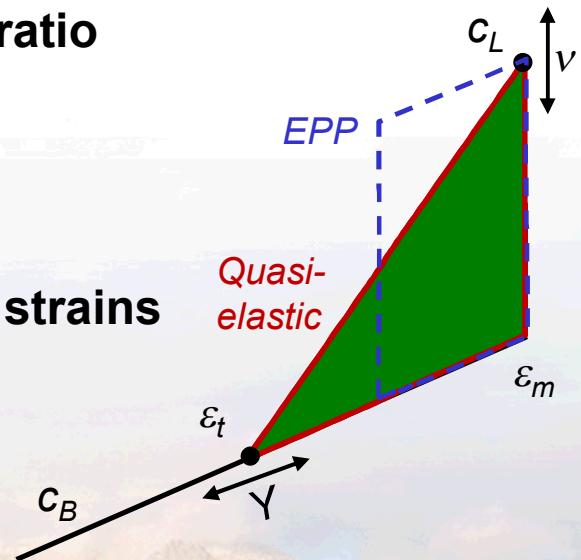
$$Y = Y_0 \left[1 + \beta(\varepsilon + \varepsilon_i) \right]^n \left[1 + A \frac{P}{\eta^{1/3}} + B(T - 300) \right]$$

- Determine shear modulus from EOS and Poisson's ratio

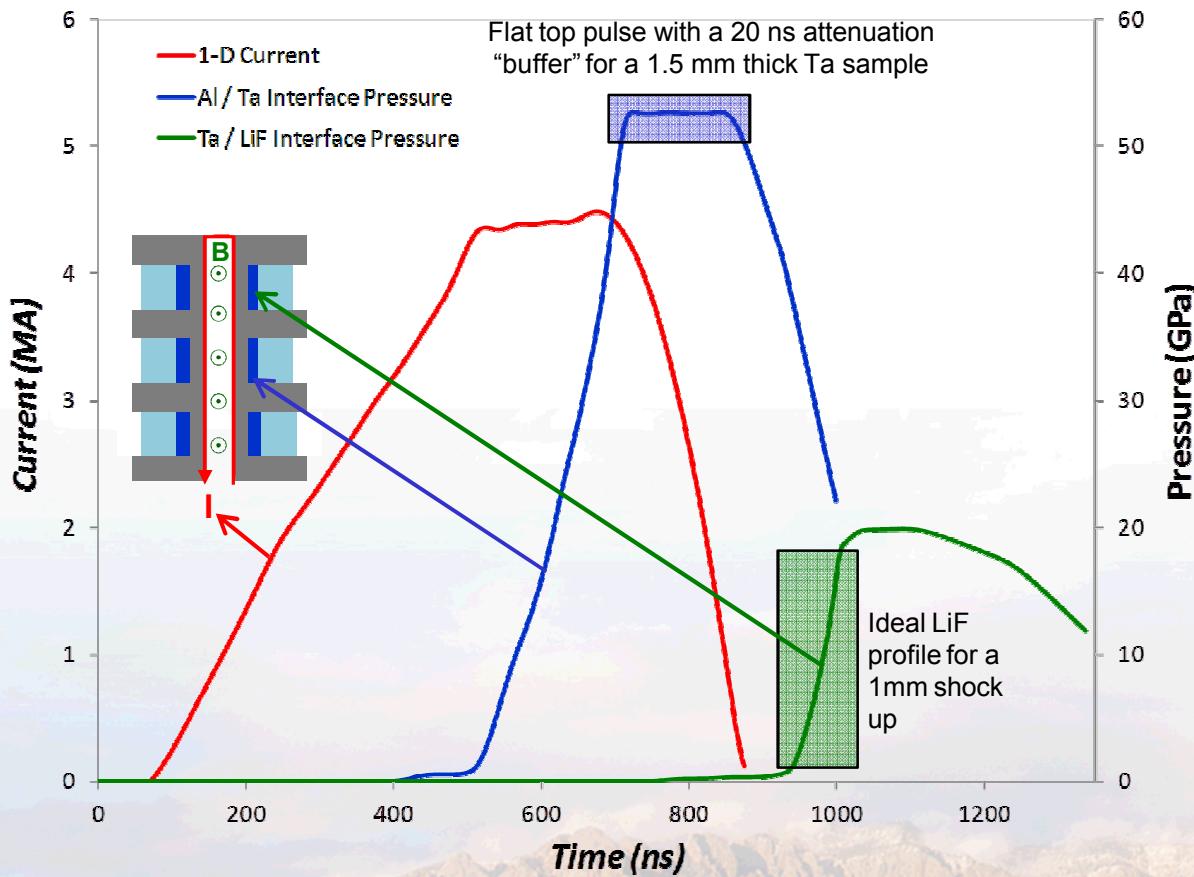
$$G = \frac{3K(1-2\nu)}{2(1+\nu)}$$

- Vary shear modulus linearly from peak to transition strains

$$G_{eff} = G \left(1 - \frac{\varepsilon - \varepsilon_m}{\varepsilon_m - \varepsilon_t} \right)$$



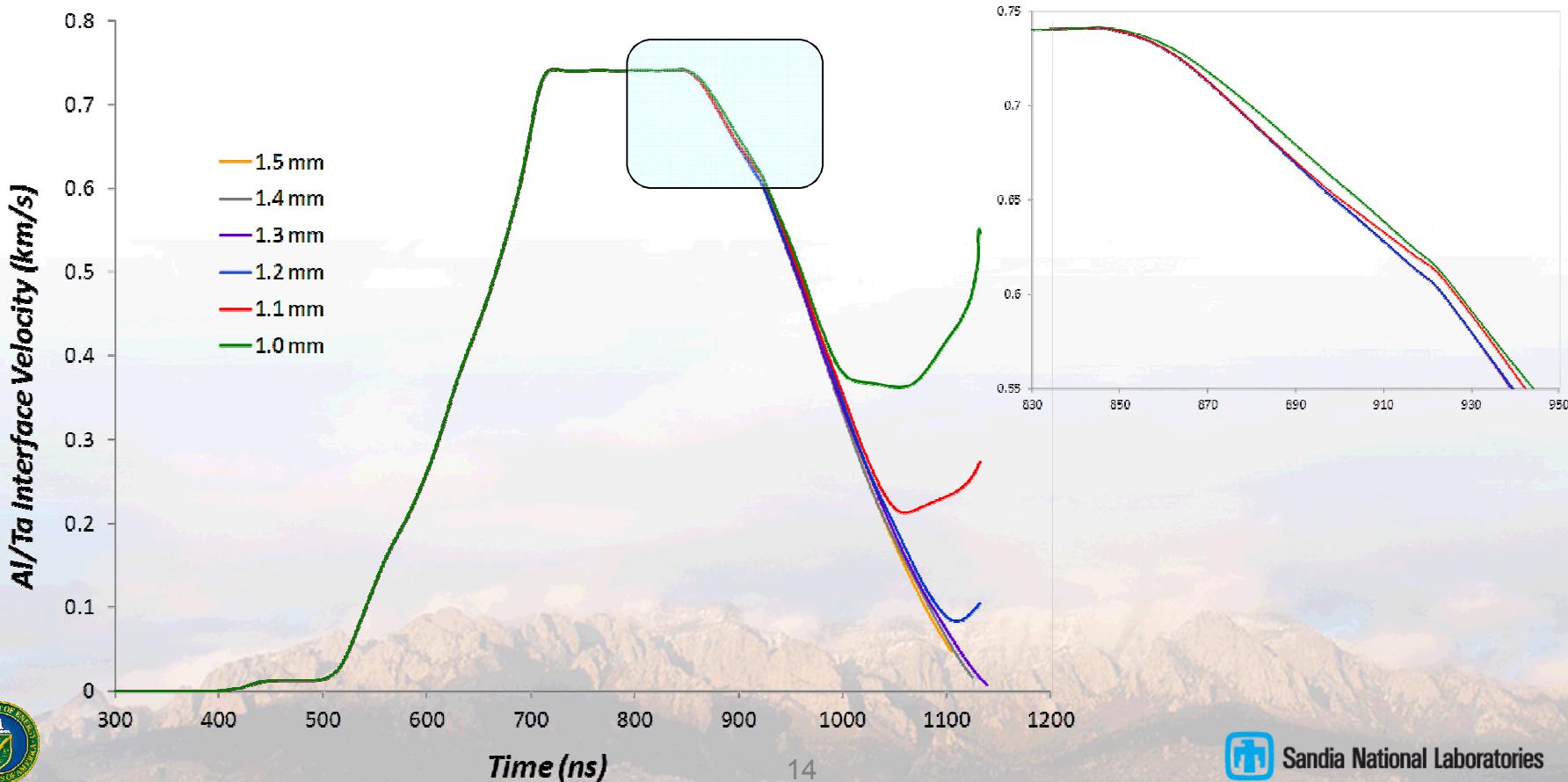
Design of new experiments



- **50 GPa peak stress in 1.5 mm thick Ta**
- **Used optimized simulations to generate a drive current such that:**
 - Flat top pulse such that there is 0 attenuation in the in-situ case
 - 1 mm shock up distance in the window
 - Tried to pick a realistic tail current fall off

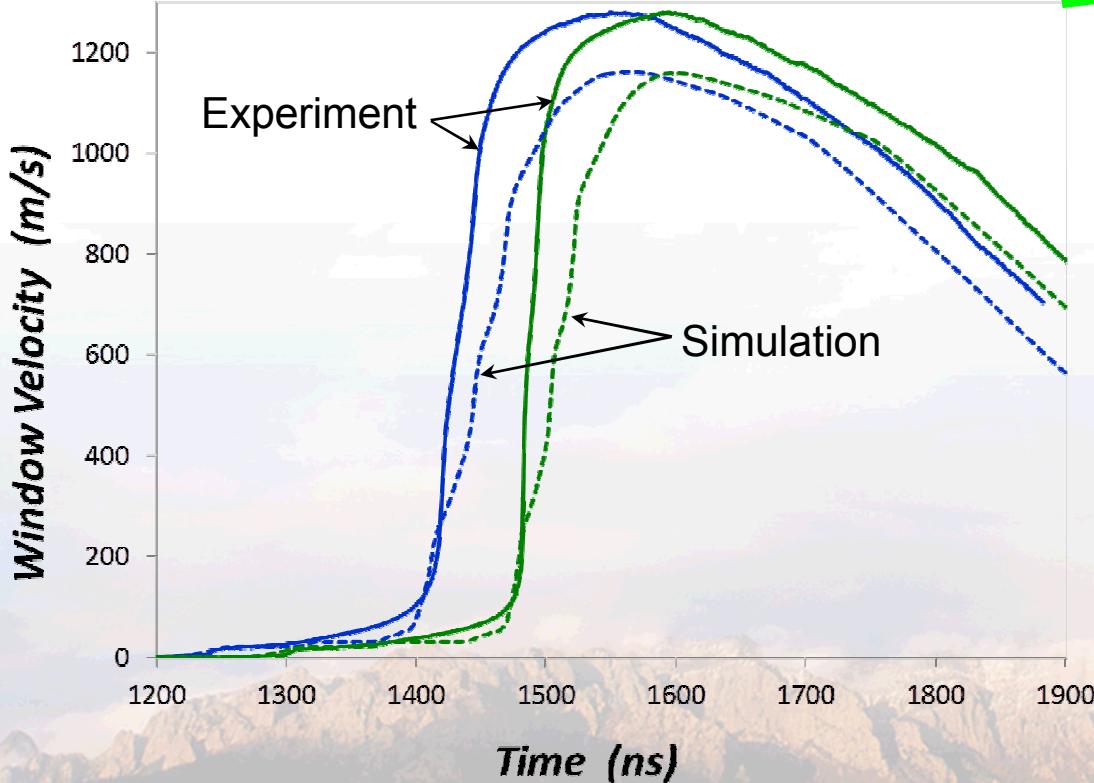
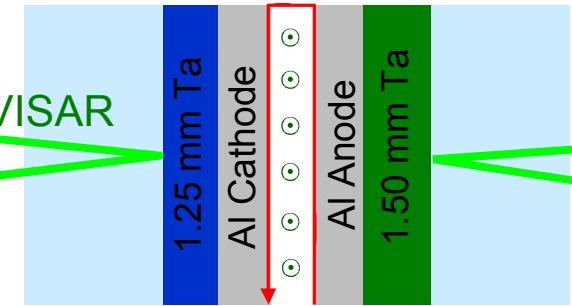
Reverberation is taken into account

- Sample thicknesses can then be chosen to avoid corruption of the unloading wave (reverberation)
 - 1.2 mm is the minimum thickness to maintain consistency through the quasi-elastic unload

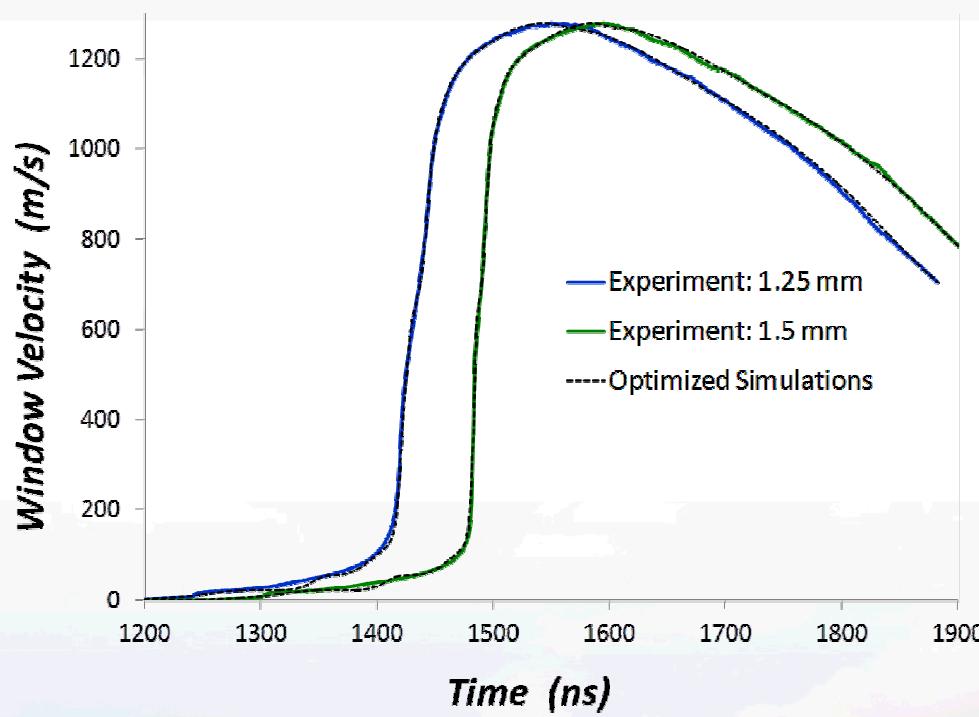
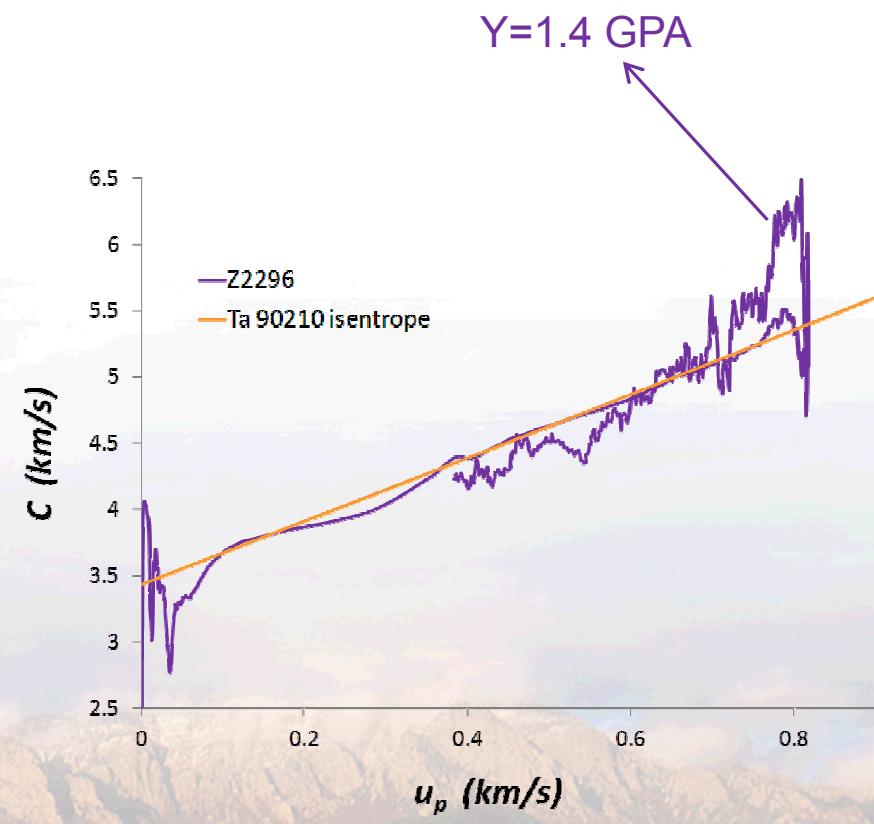


Preliminary Z2296 shot results

- Current was higher than predicted
 - Steeper waveforms
 - Attenuation is negligible



Optimization and Lagrangian analysis



Measured strength

- Lower pressure point (60 GPa) is in reasonable agreement with shock data
- Higher pressure point (120 GPa) suggests tantalum is significantly stronger under ramp compression

