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Measured unloading wave velocities may 
be used to estimate the strength
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 Uniaxial strain, elastic-plastic

 Rate independent response

 Von-Mises yield surface

 Flow strength determined from 

quasi-elastic unloading
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Window effects on ramp loading 

• Poor impedance match is difficult to account for

– Release waves are constantly generated at the window interface 
which interact with the incoming ramp

• Non-simple waves

– Produces a non-uniform stress state in the sample

– Incremental impedance matching can be a poor approximation (for 
ramp waves), particularly at higher stresses
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Strategy for removing window effects
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Perform optimized simulations until a 
good match of the experiment is obtained:
Laslo (1-D wave dynamics with MHD) + 
Dakota (optimization package)

Calculate the in situ response: 
what the waveform at each 
location would have looked like if 
the window was replaced by the 
sample

Calculate a transfer 
function (mapping) and 
apply to experimental data

Perform Lagrangian analysis and 
calculate the strength



1) Optimized simulations

• 50 control points to define the 1-D 
current

– Interpolation scheme coupled with low 
pass filter

• Independent time shifts of up to 
0.5 ns

• Mie-Gruneisen EOS

– Small changes to c0 and s

• Quasi-elastic strength model

– Rate-independent Steinberg-Guinan 
with linear decay of the shear modulus
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2) Run in situ simulation and 3) determine 
the transfer function
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4) Use the transfer function to determine 
the in situ experimental profiles

• Features not captured in the optimized simulations are transferred through 
to the in situ profiles

– Can now perform standard Lagrangian analysis
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Z1904 Results
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Y=6.4 GPA

Y=5.4 GPA

• Results are in good agreement with the tabular isentrope

– Classic impedance matching diverges at ~ 50 GPa



Analysis is model independent
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• As long as the optimized simulations are “close”, the experimental data 
dictates the response

– Varying the strength used in the optimizations results in fits which are not as good, but 
the end result is nominally the same

Mean Y: 
5.3 GPa 

Standard Deviation: 
0.2 GPa (4%)



Conclusions and future work

• Transfer function approach appears to be a robust methodology for 
accurately accounting for window effects in ramp experiments

– Should provide high fidelity strength estimates (5%?)

• Next generation of experiments on tantalum

– Generate flat top pulses to eliminate attenuation

– Experiments between 50 – 200 GPa

• Avoid corruption of the unload from the initial reflection off of the window interface 
(reverberation)

• Quantify uncertainties

– Monte Carlo simulations
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Additional Slides
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Quasi-elastic strength model

• Rate-independent Steinberg-Guinan quasi-elastic strength 
model

• Determine shear modulus from EOS and Poisson’s ratio

• Vary shear modulus linearly from peak to transition strains
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Design of new experiments

• 50 GPa peak stress in 1.5 mm 
thick Ta

• Used optimized simulations 
to generate a drive current 
such that:

– Flat top pulse such that there is 
0 attenuation in the in-situ case

– 1 mm shock up distance in the 
window

– Tried to pick a realistic tail 
current fall off
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Reverberation is taken into account
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• Sample thicknesses can then be chosen to avoid corruption of the 
unloading wave (reverberation) 

– 1.2 mm is the minimum thickness to maintain consistency through the quasi-
elastic unload 



Preliminary Z2296 shot results

• Current was higher than predicted

– Steeper waveforms

– Attenuation is negligible
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Optimization and Lagrangian analysis
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Y=1.4 GPA



Measured strength

• Lower pressure point (60 GPa) is in reasonable agreement with 
shock data

• Higher pressure point (120 GPa) suggests tantalum is 
significantly stronger under ramp compression 

17


