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Measured unloading wave velocities may
be used to estimate the strength
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Window effects on ramp loading
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°* Poor impedance match is difficult to account for
— Release waves are constantly generated at the window interface

which interact with the incoming ramp
* Non-simple waves

— Produces a non-uniform stress state in the sample
— Incremental impedance matching can be a poor approximation (for

ramp waves), particularly at higher stresses
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Strategy for removing window effects

Perform optimized simulations until a
good match of the experiment is obtained:
Laslo (1-D wave dynamics with MHD) +
Dakota (optimization package)

Calculate the in situ response:
what the waveform at each
location would have looked like if
the window was replaced by the

4 QL

Perform Lagrangian analysis and
calculate the strength

\lﬁ

Calculate a transfer
function (mapping) and
apply to experimental data
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1) Optimized simulations
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50 control points to define the 1-D

current
— Interpolation scheme coupled with low
pass filter

Independent time shifts of up to
0.5 ns

Mie-Gruneisen EOS
— Small changes to ¢, and s

Quasi-elastic strength model

— Rate-independent Steinberg-Guinan
with linear decay of the shear modulus

Y =Y,[1+B(e +gi)]{l+Aiy+B(T300)}
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Velocity (km/s)

2) Run in situ simulation and 3) determine

the transfer function

—Simulated window velocity

—Simulatedinsitu velocity
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4) Use the transfer function to determine
the in situ experimental profiles

* Features not captured in the optimized simulations are transferred through
to the in situ profiles

— Can now perform standard Lagrangian analysis
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Z1904 Results

* Results are in good agreement with the tabular isentrope
— Classic impedance matching diverges at ~ 50 GPa
Y=5.4 GPA
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Analysis Is model independent

* As long as the optimized simulations are “close”, the experimental data
dictates the response

— Varying the strength used in the optimizations results in fits which are not as good, but
the end result is nominally the same

9.5

—SimulatedY = 2.3 GPa

85 Mean Y:

—Simulated Y = 3.9 GPa

—_ Simulated Y = 4.3 GPa 5.3 GPa
©w 7.
E " —Simulated Y = 5.5 GPa
x T
o 65 - Standard Deviation:
0.2 GPa (4%)

5.5

4.5

35 |

0 0.2 0.4 0.6 0.8 1 159 14
u, (km/s)

9 111} Sandia National Laboratories




Conclusions and future work

* Transfer function approach appears to be a robust methodology for
accurately accounting for window effects in ramp experiments

— Should provide high fidelity strength estimates (5%7?)

* Next generation of experiments on tantalum
— Generate flat top pulses to eliminate attenuation

— Experiments between 50 — 200 GPa
* Avoid corruption of the unload from the initial reflection off of the window interface

(reverberation)

* Quantify uncertainties VISAR

— Monte Carlo simulations
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Additional Slides




Quasi-elastic strength model

* Rate-independent Steinberg-Guinan quasi-elastic strength
model

Iy

Y =Y,[1+ (e +gi)]”[1+ALj+B(T—3OO)}
* Determine shear modulus from EOS and Poisson’s ratio CL IV

= 3K(1=2) EPP
2(1+v)

Quasi-
° Vary shear modulus linearly from peak to transition strains ¢/astic

E—€&
G,=G|1- =
il ( Sm—[;'[j

12 ﬂ'l Sandia National Laboratories



Current (MA)

Design of new experiments

e=1-D Current
——Al/ Ta Interface Pressure

——Ta / LiF Interface Pressure

Flat top pulse with a 20 ns attenuation
“buffer”for a 1.5 mm thick Ta sample

Ideal LiF
profile for a
1mm shock
up
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* 50 GPa peak stress in 1.5 mm
thick Ta

* Used optimized simulations
to generate a drive current
such that:

— Flattop pulse such that there is
0 attenuation in the in-situ case

— 1 mm shock up distance in the
window

— Tried to pick a realistic tail
current fall off
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Reverberation is taken into account

* Sample thicknesses can then be chosen to avoid corruption of the
unloading wave (reverberation)

— 1.2 mm is the minimum thickness to maintain consistency through the quasi-
elastic unload
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Preliminary 22296 shot results

* Current was higher than predicted
— Steeper waveforms
— Attenuation is negligible
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Window Velocity (m/s)
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Oﬂbtimization and Lagrangian analysis

—Experiment; 1.25mm
—Experiment: 1.5 mm

----- Optimized Simulations
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Measured strength

* Lower pressure point (60 GPa) is in reasonable agreement with
shock data

* Higher pressure point (120 GPa) suggests tantalum is
significantly stronger under ramp compression
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