SAND2012-1461 C

SAND2012-1461C

A Multithreaded Solver for the 2D Poisson Equation

Andrés Vidal
Alain Kassab
Daniel Mota
Department of Mechanical, Materials and Aerospace
Engineering, University of Central Florida
4000 Central Florida Blvd, Orlando, United States

1-407-823-5778
Andres.Vidal@knights.ucf.edu

Keywords: Multithreaded algorithm, distributed system, Poisson
equation, linear system, Direct Numerical Simulation.

Abstract

A multithreaded solution for the 2D Poisson equation is presented.
The proposed algorithm distributes the tasks between threads in
Floating-Point Unit (FPU) intensive and non-FPU intensive. This
technique also allowed us to make the communication between
nodes asynchronous. Our approach of decoupling communication
and computation allows for much greater scalability. This new
multithreaded approach showed better performance in all
multicore processors tested. In the case of the distributed systems
tested, the proposed method had greater speed-up than the
classical scheme. The technique Red/Black ordering was found to
be effective only if data fit entirely in cache memory.

1. INTRODUCTION

The Poisson equation is perhaps the most popular differential
equation used to explain many physical phenomena [7]. After
discretization, the resulting linear system of equations is very
stable numerically and it can be easily solved with any iterative
procedure. This feature allows any non-expert programmer to
code an algorithm to solve the problem.

In the case of Computational Fluid Dynamics (CFD), the most
challenging problem is the simulation of turbulent flow with no
physical model at all [6]. This technique, called Direct Numerical
Simulation (DNS), and the cheaper counterpart Large-Eddy
Simulation (LES), demands a huge amount of computing
resources since the flow equations must be solved with all terms
included and with a very high degree of detail. Since the idea of
DNS is the study of the transient behavior of the flow, the related
linear system must be solved hundreds of thousands of times until
the data are suitable for statistical studies.

For large problems, the most frequent solution is a serial solver
(iterating on a portion of the problem) in a parallel system with
only one processing unit per node [2 and 9]. Many of the solutions
proposed for parallel systems are devised by end-users, with little
knowledge of parallel computer architecture or programming.

The purpose of this work is to present a numerical/computational
iterative technique that gets the most out of the typical cluster
configuration today: a distributed system with many
multicore/singlecore processors in each computing node.

Our approach allows the programs run time to come much closer
to perfect speed-up. Because the nodes are asynchronous it does
not matter how large, slow, or complex the network of computers
may be. This method allows for much greater scalability then is

Damian Dechev'
Scalable and Secure Systems R&D Dept.

Sandia National Laboratories
Livermore, CA

ddechev@sandia.gov

currently a'chieved. Our tests showed it to be several times faster
than the traditional synchronized approach. Here we present an
approach that offers the following contributions:

1. Method for programming a distributed system that uses Poison
equations in a way that overlaps communication and computation

2. Increased speed of scientific computation

3. Allows supercomputers to be scaled to a higher number of
nodes

4. Dividing code into Floating Point Unit (FPU) intensive and
non-FPU intensive segments. Increasing efficiency on single
processors

2. RELATED WORK

The most frequent solution found in the literature is a serial solver
(iterating on a portion of the problem) in a parallel system with
only one processing unit per node. For any of the most popular
iteration methods, Jacobi, Gauss-Seidel or Successive-Over-
Relaxation (SOR), the overall procedure is [9]:

* Every node recalculates all its points once.

* Communication is performed between nodes (or
between nodes and the master node) to update boundary
values.

* Process is repeated until convergence (usually
monitored by a master or root node).

It is important to underline that the exchanging of information is
done frequently with the Message Passing Interface (MPI)
communication library. Additionally, most implementations use
global reduction/scatter/gather operations that overload the
network rapidly while increasing number of nodes. In other
references, such as [2], the recommendation is to use libraries
such as BLAS, LINPACK, EISPACK, LAPACK, ScaLAPACK,
PETSc, etc.

For more specific flow problems, such as in [3, 4, 5, 7 and 10], the
overall procedure is a serial calculation distributed in several
nodes, with MPI communication done at the end of any iteration.
In some cases there is an improvement in the way communication

! Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.

lgalleg
Typewritten Text
SAND2012-1461 C

is done in multi-domain flow problems, but no calculation is done
during the communication stage.

The authors in [1] present a solution where partial updates are
done through asynchronous MPI communication. This solution is
closer to our method and improves performance with respect to
the synchronous scheme, but it does not scale well.

In systems with multicore processors, the usual procedure is to
execute one copy of the solver per processor and use MPI for the
data exchange. The MPI communication library is very efficient
and widely used. However it is not suitable for information
exchange within a core as all processors on the same core have
access to the much faster shared L2 cache memory.

3. CODING AND OPTIMIZATION

Independent of the methods or solutions that are going to be
implemented and tested, the way a program is coded has
important effects in its overall performance. For numerical
computations, there are some basic and useful rules that can
produce important improvements in computing time [9 and 11].

One way to improve performance is by reordering the way
equations are calculated. Red/Black ordering organizes the
equations like squares in a checkerboard (called red points and
black points respectively) [9]. The direct data dependencies are
eliminated since each recalculated point has exclusive access to its
immediate neighbors. The resulting ordering scheme allows the
calculation of the red points in parallel with the black ones. On the
other hand, in a serial processor, if red points are updated first and
then the black ones, cache memory will be better used since there
is no data dependency between equations.

Other ways to improve performance is by the substitution of
multiple real divisions with the product of the corresponding
inverse [11], as well as the use of the integrated instruction

a+b*c. In all implementations of the present work, the g++
compiler was used with the optimization switch —O3.

4. DISTRIBUTED/MULTICORE SOLVER

An important observation in a DNS/LES simulation is the fact that
more than 80% of the processing time is spent by the floating
point unit. Another important issue to take into consideration is
that many multicore processors have more threads than FPUs. In
order to achieve an efficient solution, the main program (main-
thread) may launch some additional solver-threads to iterate in a
portion of the problem. The total number of solver-threads does
not necessarily have to be equal to the number of FPUs. In this
alternative, the main thread can perform the rest of the tasks that
are not FPU intensive.

Our novel idea of separating the code into threads that are FPU
intensive and threads that are not FPU intensive, all of them
running at the same time, changes the way the calculation is going
to converge. It is unlikely that the same problem will have the
same convergence history in two different runs. Additionally,
having threads using the FPU constantly will have all pipelines of
the floating point unit full. This is the first time this technique has
been applied and is one of the main contributions of our work.

With these considerations, our proposed algorithm can be stated
as:

* Execute a predefined number of solver-threads. They
iterate on a portion of the problem, calculating the
maximum increment at the end of any iteration, and

checking if the maximum numbers of iterations have
been reached.

* Use the main thread to monitor convergence, coordinate
communication between nodes, manage 1/O operations,
and to create restores points as necessary.

* All nodes perform the same operations, except the
master node which additionally synchronizes all
communication operations.

The basic idea of this solution is that the calculation is overlapped
with communication and I/O operations, producing important
savings in computation time. It is convenient to remember that
MPI operations, even in high-speed networks, require a lengthy
waiting/transfer time. This waiting time will become more
significant as the number of nodes increases.

The tasks of any solver-thread can be stated as:
1. Get data of corresponding block.

2. Send signal to the main thread informing it that this thread is
running.

3. Initialize solution in block.
4. Reset maximum increment and number of iterations.
For each point in block:
5.1 Update solution.
5.2 Compute maximum increment.
5.3 Update number of iterations.
6. If stop condition is activated, quit.
7. Go to step 4.

In the second step it is necessary to create synchronization
between the solver-thread and the main thread. In the Linux
environments, when a new thread is created, it may not be running
when control is returned to the calling process. This step is not
necessary in Windows systems. After some initialization steps,
any solver-thread will iterate continuously until the stop condition
is activated. This separation of tasks will optimize the use of the
FPU. Because any of the solver-threads may not be running at any
moment, some solver-threads may iterate more than others and/or
than the maximum predefined number of iterations (needed if
calculation does not converge).

Finally, the tasks of the main thread are:
1. Start MPIL

Perform a general setup.

Start solver-threads.

Wait until all solvers are running.

A

While stop condition is not activated:
5.1 Wait until first solver has done one iteration.
5.2 Exchange data between nodes.

5.3 If all solver-threads (in all nodes) have converged,
activate stop condition.

54 If all solver-threads (in all nodes) have
reached/exceeded the maximum number of
iterations, activate stop condition.

6. Write solution.

7. Finish MPI communications.

8. End computation.

The idea behind step 5.1 is to avoid the overload of the network
from the constant exchanging of data. The main thread (in the root
node) waits until the first solver-thread has done one iteration,
while the other main threads just wait for the data. Updating the
boundary values and recalculating the new ones at the same time
will make convergence completely different. The solution of a
linear system is the same no matter what iterative procedure is
used, or what initial values are set or how the points are updated.

5. TESTING THE MULTICORE SOLVER

Before proceeding with the evaluation of the proposed solver, the
multicore part of the solver will be tested first. The equation to be
solved is:

V=0)

With the boundary conditions:
¢(0,7)=10; ¢(1,)=30
¢(x,0)=40; ¢(x,1)=20

The usual way to solve Equation (1) is by finite differences (or
similar procedures), in which a discrete distribution of points is
located in space, substituting all derivatives with finite difference
expressions. In 2D, if all points are equally spaced, the resulting
equation is:

¢;-,A,~ =

2

LG)
Vi1, + ¢i+l,j + i,j-1 + i,j+1 3)

4
Using the iterative procedure SOR, equation (3) is re-written as:
1 (¢)_ * *
¢i,j = Z i-1, +¢i+1,j T4 +¢i,j+1 ¢i,j w+¢i,j “4)

*
With ¢l. I.the value computed in the previous iteration. The over-

relaxation factor (W chosen is 1.5, which is not necessarily the
optimum but enough to speed-up convergence. In all calculations,
the tolerance was set to 110" All internal points are initialized
with the value 0.

To gain important experimental data on a variety of platforms, we
evaluated our approach on seven systems:

S1: Computing node with 2 Intel Xeon, 3.20 GHz, 2 MB cache,
hyper-threading disabled, Linux operating system and g++
compiler version 4.1.2.

S2: Computing node with 2 Intel i7 quadcore, 3.07 GHz, 12 MB
cache, hyper-threading disabled, Linux operating system and g++
compiler version 4.1.2.

S3: Workstation with 1 Intel Xeon X5670, 6 cores, 2.93 GHz, 12
MB cache, hyper-threading disabled, Linux operating system and
g++ compiler version 4.5.2.

S4: Computing node with 2 AMD Opteron 248, 2.20 GHz, 1 MB
cache, Rocks 5.1 / CentOs 5.2 operating system and g++ compiler
version 4.1.2.

S5: Front-end node with 4 Intel Xeon, 2.8 GHz, 1 MB cache,
hyper-threading disabled, Linux operating system and g++
compiler version 4.1.2.

S6: PC with 1 Intel i7 quadcore, 2.80 GHz, 8 MB cache, enabled
hyper-threading, Cygwin sub-system version 1.7.9 under
Windows 7 and g++ compiler version 3.3.

S7: Computing node with 2 Intel Xeon, 3.06 GHz, 1 MB cache,
enabled hyper-threading, Linux operating system and g++
compiler version 4.1.2.

The first parameter to be determined is the optimum number of
solver-threads to be set in the multicore solver. This task was done
by solving a linear system of 122x100 internal equations. Since
the core idea of this work is the separation of the FPU operations
and non-FPU operations, problem size should not affect the way
solver-threads interact with each other. The optimum number of
solvers was found to be respectively 1, 7, 5, 1, 4, 6 and 3. With
the exception of system S6, the optimum number of solvers plus
the main thread is equal to the number of physical threads. In the
special case of the system S6 can be explained with the fact that
the Windows 7 system is not designed for high performance
computing. The rest of the systems are Linux implementations
specially configured for intensive computations.

For example, the same code compiled with g++ 3.3 in the Interix
sub-system always runs 20% slower than in Cygwin running in
the same machine. Moreover, all codes compiled with Visual C++
2010 run 20% slower than in Cygwin. This difference in time is
very important in high performance computing.

Once the optimum number of solvers was determined, four
different tests were performed for any of the systems already
mentioned:

T1: Standard serial SOR solver. The classical algorithm was

coded and it is not necessarily the best implementation. No
comparison with other possible implementations was done.

T2: The same as test T1 but with Red/Black ordering.

T3: Uniprocessor multicore solver. The optimum number of
solver-threads was determined previously. This is our proposed
method.

T4: The same test T3 but with Red/Black ordering.

Table 1: Times for 96,000 equations, system SS and test T1

Run Iterations Time (seconds)
1 16,997 32.361
2 16,997 32.663
3 16,997 32.342
4 16,997 32.642
5 16,997 32.255

Table 1 shows the times for the benchmark calculation (T1) done
on the S3 system with 96,000 internal equations. As expected, the
number of iterations needed in each run is exactly the same.

Table 2 shows the results of the solution of the same 96,000
equations, but using SOR with Red/Black ordering (T2). For this
number of equations, Red/Black ordering speeds-up convergence
considerably. This behavior is consistent with the ones reported in
the literature [9].

The last column of Table 2 shows the maximum difference of the
results obtained with SOR-RB and SOR alone. Even though the

maximum difference is about 10 times larger than the tolerance,
the results are correct. We would like to emphasize that, when
solving large linear systems, the maximum difference of the
solution, in two consecutive iterations, decreases very slowly. For
this problem, a tolerance of 1-10'% not necessarily means that the
solution has 12 correct decimal digits. The opposite is true only
for small linear systems.

Table 2: Times for 96,000 equations, system SS and test T2

The results can be divided into two different groups. The first
group consists in tests performed in systems with 2 single core
processors and two physical threads. The second group of results
is on systems with at least 3 solver-threads.

Figures 1 and 4 are the first group of results. There can be
observed two different behaviors in the speed-up. When the
problem size fits completely in cache memory, SOR with
Red/Black ordering has the best performance.

There are several factors that come into play when determining if
all the data will fit into the cache. There is the size of the cache,

R Iterati Ti d
un erations ime (seconds) | Max. A¢ size of the data, and number of caches.
1 16,997 19.043 4.13-10"
2 16,997 18.011 4.13-10" 14 -
3 16,997 18.736 4.13-10" 12 4
4 16,997 17.057 4.13-10" =TS
i, 10 44° N
5 16,997 17.527 4.13-10° I “«
g 27 N
eecesssssescesccsccccesssseNgeccas
. . . < 6 <
The results with the multicore solver and 3 solvers are shown in o Se
Table 3, for the same 96,000 equations. 3 4 -
U) m
2 -
Table 3: Times for 96,000 equations, system SS and test T3 0 | |
Run Iterations Time (seconds) | Max, Ag 0 2,000,000 4,000,000
Number of equations
1 17,074-17,691 12475 23810 | T2 c0eeee T3 ====T4]
2 16,902-17,289 11.613 1.10-10°™ Figure 2: Speed-up in system S2 versus number of equations
3 16,741-17,323 11.676 1.41-10°
4 16,890-17,774 11.960 2.03-10° 8 -
5 16,931-17,364 11.638 1.23-10° 7 dao
' "“\\
6 - ~
The most interesting aspect to underline from Table 3 is that the 5 4 ‘\‘
execution times for this new method are considerably lower than % 4 Sso
the tests T1 and T2. This difference leads us to the conclusion S "\\‘
that, for this case, keeping the FPU full is an effective solution. 3 3 -
Q2
(73] \
3 '
0 T 1
2,000,000. 4,000,000
Number of equations

2,000,000 . 4,000,000
Number of equations

T2 ceeeeee T3 me=m=aT4|

I

Figure 1: Speed-up in system S1 versus number of equations

Figures 1 to 7 show the results of the tests performed in all
systems. The speed-up reported is calculated with respect to the
test T1. In all figures, the values are the average of 5 calculations.

I

Figure 3: Speed-up in system S3 versus number of equations

T2 c20eeee T3 mem=aT4]|

Having all the data fit in cache legitimately is very rare. Given the
sizes of scientific calculations it cannot be expected that there will
be enough cache. Typically the way this will happen is a data set
designed for a smaller system is used on a larger system that can
further divide the data. Having data fit in cache when it previously
didn't can cause super-linear speed-up and is a false comparison.

For this situation, the multicore solvers show poor performance,
even if compared with the traditional SOR solver. The Red/Black
ordering improves performance significantly but it is always
below the SOR with RB. This is most likely because all of the
threads in our multicore solver are constantly being swapped out

by the OS and losing time, while the traditional solver does not
lose time to this overhead.

After the problem size exceeds the capacity of cache memory,
performance of Red/Black ordering decays tremendously. This
behavior has not been reported in the literature. When solving
large linear systems, as in DNS/LES, it is not reasonable to think
that all the data will fit in the cache memory.

25 -
g *
I 15 -
o '
g 1 *1----......--.... -------- sscses
D05 | hommmmmm =
0
0 2,000,000 4 000,000

Number of Equations

T2 ceeeeee T3 m==aTd

Figure 4: Speed-up in system S4 versus number of equations

3.5
2.5 -\
\

2 |
\

1.5 4\ ©
1 -
0.5

0 |

Numbe%gtogq%%?ions 4,000,000

T2 c2eeeee T3 m==aT4]

B S

Speed-up

1

I

Figure 5: Speed-up in system S5 versus number of equations

The second group of results consists in Figures 2, 3, 5, 6 and 7. In
all cases the tendency is similar and consistent. When the problem
data fit in cache memory, the Red/Black ordering improves
performance with respect to the traditional SOR. However, in this
kind of systems, the multicore solver has better performance and
it is always constant, no matter the problem size. It is interesting
to note that Red/Black ordering boosts the performance of the
multicore solver, but the speed-up collapses immediately as the
problem data exceed the cache memory.

6 -
5 7 pr—
! \
%4 —'r...'......\"'..00.-00.....50.00..
8 3 1 \\
2 .~
m 2 i ““-—--
1 —K
0 . |
’ Numb2rofediations +000.000
I T2 sesscee T3 ----T4|

Figure 6: Speed-up in system S6 versus number of equations

From all these results it can be concluded that, for
multicore/multithreaded systems, the optimum usage of the
floating point unit is much more effective than trying to optimize
cache accesses in a serial calculation.

2,000,000, 4,000,000
Number of Equations
T2 eeeeee T3 =mem=aT4]

I

Figure 7: Speed-up in system S7 versus number of equations

6. TESTING THE GENERAL SOLVER

From the tests of the multicore solver it can be inferred that, in the
evaluation of the distributed/multicore solver, the two most
important aspects that will affect performance are the amount of
equations per node and the communication overhead. The sub-
domain method was selected for the parallelization of the problem
since allows a complete distribution of data and work load
between nodes.

Tests were performed in two different architectures:

Euler: Cluster with 64 nodes, each one with 2 AMD Opteron 248,
2.20 GHz, 1 MB cache, Rocks 5.1 / CentOs 5.2 operating system
and gt++ compiler version 4.1.2. MPI: Open MPL
Nodes/Processors available for tests: 50/100. Type of
interconnection: GigabitEthernet (5)

Hilbert: Cluster with 64 nodes, each one with 2 Intel Xeon dual-
cores, 3.00 GHz, 2 MB cache, disabled hyper-threading, Rocks
5.1/ CentOs 5.2 operating system and g++ compiler version 4.1.2.
MPI: Open MPI. Nodes/Processors available for tests: 40/160.
Type of interconnection: GigabitEthernet (5a)

Following the same procedure as done in the evaluation of the
multicore solver, four distributed procedures were evaluated:

DP1: Standard serial SOR solver with communication performed
at the end of any iteration. Number of copies of the same code per
node is 2 in Euler and 4 in Hilbert

DP2: The same test as DP1 but with Red/Black ordering.

DP3: Distributed/Multicore solver. Number of solvers per node: 1
for Euler, 3 for Hilbert (plus the main thread)

DP4: The same test DP3 but with Red/Black ordering.

The first set of tests was to evaluate the performance as the
number of nodes increases but keeping the same amount of
equations per node. Each predefined number of nodes implies the
solution of a different linear system, but it will help to understand
how the previous different procedures perform. As done in the
multicore solver tests, 5 calculations were performed in order to
have representative values.

Table 4: Times (in seconds) for 96,000 equations per node in
cluster Euler

Nodes DP1 DP 2 DP 3 DP 4
2 23.681 17.298 25.842 19.855
4 28.989 22.579 27.595 22.847
8 45.895 39.515 28.082 26.036
16 63.610 56.643 28.386 27.800
32 92.534 86.042 28.540 29.434

Table 5 shows the results for 384,000 equations per nodes. This
number of equations is large enough to exceed the size of cache
memory. These results are consistent with the ones shown in
Table 4. Once again, with a small number of nodes, the traditional
solver performs better than the new one but this tendency is
reverted as the number of nodes increases. The slower memory
speed makes the difference in time smaller, but it is expected that
this magnitude should increase as the number of nodes increases.

Table 5: Times (in seconds) for 384,000 equations per node in
cluster Euler

Nodes DP1 DP2 DP3 DP4
2 66.492 88.116 108.926 195.906
4 71.005 97.242 109.458 199.931
8 90.756 111.339 109.848 204.168
16 113.419 136.368 111.987 204.527
32 142.855 161.765 115.748 203.245

By observing the results vertically, the overhead in
communication is consistent in all cases. The new method has a
small overhead in communication, producing important savings in
computing times.

Table 6: Times for 192,000 equations per node in cluster

Table 4 shows the average times for all tests done with 96,000
equations per node, and ranging from 2 through 32 nodes. From
these results, two different readings can be done. The first is by
observing the results horizontally. In this situation, the linear
system to be solved is the same in all four tests. As predicted in
the literature, Red/Black ordering improves the computing times
in the whole range of nodes. When the number of nodes is small,
the traditional approach is much better than the new method. On
the other hand, when the number of nodes is increased, the
overhead in communication takes an important amount of time in
the traditional approach. It is very interesting to observe that the
computing time almost does not change with the new solver. This
can be explained because, in the new scheme, one processor is
dedicated exclusively to send and receive data from the other
nodes, while the other processor is updating values permanently.

The second reading that can be done to these results is vertically.
It is true that the linear system solved is different (96,000%*2,
96,000*4, 96,000*%8, etc.) but the important increment of
calculation time in the traditional solver is a good indicator of the
overhead that the communication produces in the overall
performance. It is convenient to remember that, in the traditional
approach, no calculation is done while performing
communications between nodes. For the case of 32 nodes, the new
solver is quite faster than the traditional solver. This big
difference, caused mainly by the overlap of communication and
computation, is expected to produce important savings in
computing time for a large number of nodes, used frequently in
DNS simulations.

Hilbert
Nodes DP1 DP2 DP3 DP4
2 30.068 20.581 22.291 13.377
4 46.568 38.876 23.613 14.800
8 72.374 64.047 25.922 15.690
16 107.518 96.971 24.597 14.544
32 167.518 159.298 25.510 14.944

Table 7: Times for 764,000 equations per node in cluster

Hilbert
Nodes DP1 DP2 DP3 DP4
2 78.951 69.543 87.760 106.335
4 97.567 86.628 89.223 109.984
8 122.521 110.417 92.248 115.064
16 161.747 152.855 95.181 116.054
32 226.555 217.597 97.624 122.404

Looking at Tables 6 and 7, results on the cluster Hilbert have
similar behavior. It is very interesting that in this quad-processor
distributed system; there is a big difference in performance when
the problem is in cache memory. These results confirm our
hypothesis that having many threads accessing data in the same
memory bank should produce better performance. In a similar
manner, performance of our proposal is clearly superior as the
number of nodes increases. It calls the attention that, in both

traditional approaches, communication overhead degrades
performance considerably.

40 -
- -— -—
9_30 - - - "‘—’
? ” - -
© 20 7 .-
g Priad
v 10 e
0
0 20 40 60
Number of Nodes
DP1 ¢¢s¢ses DP2 ===aDP3 = = DP4

Figure 8: Speed-up for 720,000 equations on Euler cluster

Figure 8 shows the speed-up in the solution of 720,000 equations,
ranging the number of nodes from 10 to 50. This linear system is
small enough to fit entirely in cache memory in all cases. These
results are very interesting because, due to the problem size, the
calculation time is very small; relying performance mainly on
communication between nodes.

50 4
40 - o7
%30 d ,"' Vg
8 ’o’ '
@ 20 - Prad . ’
@ 10 :(--"‘;“’
0
0 20 40 60
Number of Nodes
DP1 t+esese DP2 ====DP3 = = DP4

Figure 9: Speed-up 6,000,000 equations on Euler cluster

For the traditional solvers, even that this problem size is ideal for
Red/Black ordering, there is no difference in speed-up between
solution DP1 and DP2. On the other side, performance of both
multicore solutions is very good and, eventually, speed-up
stabilizes as the number of nodes reaches 50. As expected, in all
these solutions that use global MPI communication operations,
network speed will impose a limit in the amount of data that can
be transferred.

On the contrary, the number of iterations for convergence
increases permanently in both multithreaded solutions. This issue
becomes more evident in the solution DP4 and 50 nodes, where
the number of iterations required increases significantly. Due to
the fact that, in method DP4, calculation and communication are

done at the same time, this increment in iterations is basically
more communication time. For both multicore solutions, the
additional overhead has little effect on performance in comparison
with the traditional schemes.

Figure 9 shows the comparison in speed-up for a linear system of
6,000,000 equations. For this problem size, for a number of nodes
of 30 and less, data size is larger than L2 cache memory. For a
number of nodes of 40 and 50, all data fit entirely in cache
memory.

For this linear system, performance behavior of the classical
approaches DP1 and DP2 is similar with reported in the literature;
with an increasing speed-up and, when a maximum is reached,
communication overhead produces a small degradation in
performance. However, the situation is different for the multicore
solutions DP3 and DP4. When the number of nodes is small, the
traditional approach is superior but, the multithreaded approach
DP3 has better performance as soon as the number of processors
increases. The behavior of the solution DP4, the multicore solver
with Red/Black ordering, is quite interesting because, for a small
number of processors, this method has the worst performance of
all solutions. The just described situation remains unchanged until
the point in which the amount of nodes imposes an important load
in the communication lines. Additionally, as soon as the problem
size fits completely in cache memory, performance of the
procedure DP4 is boosted considerably.

50 -
0.40 n - - - -~
3 T . -
(] -
g 20
wv
10
0
0 20 40 60
Number of Nodes
DP1 ¢¢s¢ses DP2 = ==aDP3 = = DP4

Figure 10: Speed-up for 720,000 equations on Hilbert cluster

For the multicore procedures DP3 and DP4, communication time
is at most the same calculation time. Since in the multithreaded
solutions, calculation and communications is done at the same
time, and considering that the exchanging of boundary values is
done at the end of the iteration of the first solver, calculation time
is expected to be larger than system time.

Figure 10 shows the speed-up for the solution of 720,000
equations on the cluster Hilbert. For the traditional
implemmentations DP1 and DP2, performance is quite similar to
the ones obtained in the cluster Euler. It is very interesting that the
performance of the new solver (DP3 and DP4) is clearly superior.

Even that the solution of a small system is not convenient with a
large number of nodes, the big difference in performance confirms

that the separation of FPU/non-FPU operations is different threads
takes the most out of the new architectures.

Finally, the case of 6,000,000 equations shows some interesting
results. First of all, the difference in performance of the traditional
approaches (DP1 and DP2) and the new ones (DP3 and DP4) is

very big.

150 -
- -
r 4
S 100 P _.
: s
(] 7/ ‘o"
k% 50 A "o"
0
0 10 20 30 40 50
Number of Nodes
DP1 t+esese DP2 ====DP3 = = DP4

Figure 11: Speed-up for 7,200,000 equations on Hilbert cluster

In Figure 11 the performance of the standard solvers decays
permanently, due basically to the communication overhead. For
the new multithreaded implementations, the difference in
performance is important between the dual-core cluster and the
quad-core cluster. These results are consistent with the multicore
tests; in which our proposal performs better in new architectures.

As mentioned previously, the sudden change in the way data are
stored and accessed (from main memory to cache memory),
makes the procedure considerably faster and cannot be considered
as a property of the method. This super-linear behavior is a
combination of multithreaded calculations, data stored in L2
cache memory and communication of data done at the same time;
all this in a multicore cluster.

7. CONCLUSIONS

A distributed/multicore solver has been proposed to solve a 2D
Poisson equation. The distribution of tasks in FPU intensive and
non-FPU intensive threads produces an important improvement in
performance in the new multicore architectures. The classical
approach seems the best choice for uniprocessor systems.

For the distributed/multicore solver, the proposed distribution of
tasks produces important savings in time as the number of nodes
increases.

The Red/Black ordering technique was found to boost speed-up
only if data fit completely in cache memory. This issue is very

important because for very large linear systems, is more likely to
have a big amount of data per node.

In this work we demonstrated that by having threads that are FPU
intensive and non-FPU intensive, performance on a single
processor can be increased. This technique also allowed us to
make the communication between nodes asynchronous. Our
approach of decoupling communication and computation allows
for much greater scalability. Not only are these scientific
simulations now scalable but they will also be much faster.

8. REFERENCES

[1] Chau, M., El Baz, D., Guivarch, R., Spiteri, P., 2007, “MPI
implementation of parallel subdomain methods for linear and
nonlinear convection-diffusion problems”, Journal of Parallel
and Distributed Computing, vol. 67, pp. 581-591.

[2] Dongarra, J., Foster, 1., Fox, G., Gropp, W., Kennedy, K.,
Torczon, L., White, A., 2003, Source Book of Parallel
Computing, Morgan Kauffmann Publishers.

[3] Garbey, M., Vassiliesvky, Y.V., 2001, “A parallel solver for
unsteady incompressible 3D Navier-Stokes equations”,
Parallel Computing, vol. 27, pp. 363-389.

[4] Henshaw, W.D., Schwendeman, D.W., 2008, “Parallel
computation of three-dimensional flows using overlapping
grids with adaptive mesh refinement”, Journal of
Computational Physics, vol. 227, pp. 7469-7502.

[5] Hsu, H.-S., Hwang, F.-N., Wei, Z.-H., Lai, S.-H., Lin, C.-A.,
2011, “A parallel multilevel preconditioned iterative pressure
Poisson solver for the large-eddy simulation of turbulent
flow inside a duct”, Computers & Fluids, vol. 45, pp. 138-
146.

[6] Launder B., Sandham N., 2002, Closure Strategies for
Turbulent and Transitional Flows, Cambridge University
Press.

[7] Ng, K. F., Mohd Ali, N. H., 2008, “Performance analysis of
explicit group parallel algorithms for distributed memory
multicomputer”, Parallel Computing, vol. 34, pp. 427-440.

[8] Press, William H., Teukolsky, S. A., Vetterling, W. T.,
Flannery, B. P., 2007, Numerical Recipes, The Art of
Scientific Computing, Third Edition, Cambridge University
Press.

[9] Rauber, T., Runger, G., 2010, Parallel Programming,
Springer.

[10] Sonzogni, V. E., Yommi, A. M., Nigro, N. M., Storti, M. A.,
A parallel finite element program on a Beowulf cluster,

Advances in Engineering Software, vol. 33, pp. 427-443,
2002.

[11] Wadleigh, K. R., Crawford, 1. L., Software Optimization for
High Performance Computing, Hewlett-Packard Professional
Books, 2000.

