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Abstract 
A multithreaded solution for the 2D Poisson equation is presented. 
The proposed algorithm distributes the tasks between threads in 
Floating-Point Unit (FPU) intensive and non-FPU intensive. This 
technique also allowed us to make the communication between 
nodes asynchronous. Our approach of decoupling communication 
and computation allows for much greater scalability. This new 
multithreaded approach showed better performance in all 
multicore processors tested. In the case of the distributed systems 
tested, the proposed method had greater speed-up than the 
classical scheme. The technique Red/Black ordering was found to 
be effective only if data fit entirely in cache memory. 

1. INTRODUCTION 
The Poisson equation is perhaps the most popular differential 
equation used to explain many physical phenomena [7]. After 
discretization, the resulting linear system of equations is very 
stable numerically and it can be easily solved with any iterative 
procedure. This feature allows any non-expert programmer to 
code an algorithm to solve the problem. 

In the case of Computational Fluid Dynamics (CFD), the most 
challenging problem is the simulation of turbulent flow with no 
physical model at all [6]. This technique, called Direct Numerical 
Simulation (DNS), and the cheaper counterpart Large-Eddy 
Simulation (LES), demands a huge amount of computing 
resources since the flow equations must be solved with all terms 
included and with a very high degree of detail. Since the idea of 
DNS is the study of the transient behavior of the flow, the related 
linear system must be solved hundreds of thousands of times until 
the data are suitable for statistical studies. 

For large problems, the most frequent solution is a serial solver 
(iterating on a portion of the problem) in a parallel system with 
only one processing unit per node [2 and 9]. Many of the solutions 
proposed for parallel systems are devised by end-users, with little 
knowledge of parallel computer architecture or programming. 

The purpose of this work is to present a numerical/computational 
iterative technique that gets the most out of the typical cluster 
configuration today: a distributed system with many 
multicore/singlecore processors in each computing node.  

Our approach allows the programs run time to come much closer 
to perfect speed-up. Because the nodes are asynchronous it does 
not matter how large, slow, or complex the network of computers 
may be. This method allows for much greater scalability then is 

currently a1chieved. Our tests showed it to be several times faster 
than the traditional synchronized approach. Here we present an 
approach that offers the following contributions: 

1. Method for programming a distributed system that uses Poison 
equations in a way that overlaps communication and computation 

2. Increased speed of scientific computation 

3. Allows supercomputers to be scaled to a higher number of 
nodes 

4. Dividing code into Floating Point Unit (FPU) intensive and 
non-FPU intensive segments. Increasing efficiency on single 
processors 

2. RELATED WORK 
The most frequent solution found in the literature is a serial solver 
(iterating on a portion of the problem) in a parallel system with 
only one processing unit per node. For any of the most popular 
iteration methods, Jacobi, Gauss-Seidel or Successive-Over-
Relaxation (SOR), the overall procedure is [9]: 

• Every node recalculates all its points once. 

• Communication is performed between nodes (or 
between nodes and the master node) to update boundary 
values. 

• Process is repeated until convergence (usually 
monitored by a master or root node). 

It is important to underline that the exchanging of information is 
done frequently with the Message Passing Interface (MPI) 
communication library. Additionally, most implementations use 
global reduction/scatter/gather operations that overload the 
network rapidly while increasing number of nodes. In other 
references, such as [2], the recommendation is to use libraries 
such as BLAS, LINPACK, EISPACK, LAPACK, ScaLAPACK, 
PETSc, etc. 

For more specific flow problems, such as in [3, 4, 5, 7 and 10], the 
overall procedure is a serial calculation distributed in several 
nodes, with MPI communication done at the end of any iteration. 
In some cases there is an improvement in the way communication 
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is done in multi-domain flow problems, but no calculation is done 
during the communication stage. 

The authors in [1] present a solution where partial updates are 
done through asynchronous MPI communication. This solution is 
closer to our method and improves performance with respect to 
the synchronous scheme, but it does not scale well. 

In systems with multicore processors, the usual procedure is to 
execute one copy of the solver per processor and use MPI for the 
data exchange. The MPI communication library is very efficient 
and widely used. However it is not suitable for information 
exchange within a core as all processors on the same core have 
access to the much faster shared L2 cache memory.  

3. CODING AND OPTIMIZATION 
Independent of the methods or solutions that are going to be 
implemented and tested, the way a program is coded has 
important effects in its overall performance. For numerical 
computations, there are some basic and useful rules that can 
produce important improvements in computing time [9 and 11]. 

One way to improve performance is by reordering the way 
equations are calculated. Red/Black ordering organizes the 
equations like squares in a checkerboard (called red points and 
black points respectively) [9]. The direct data dependencies are 
eliminated since each recalculated point has exclusive access to its 
immediate neighbors. The resulting ordering scheme allows the 
calculation of the red points in parallel with the black ones. On the 
other hand, in a serial processor, if red points are updated first and 
then the black ones, cache memory will be better used since there 
is no data dependency between equations. 

Other ways to improve performance is by the substitution of 
multiple real divisions with the product of the corresponding 
inverse [11], as well as the use of the integrated instruction 

. In all implementations of the present work, the g++ 
compiler was used with the optimization switch –O3. 

4. DISTRIBUTED/MULTICORE SOLVER 
An important observation in a DNS/LES simulation is the fact that 
more than 80% of the processing time is spent by the floating 
point unit. Another important issue to take into consideration is 
that many multicore processors have more threads than FPUs. In 
order to achieve an efficient solution, the main program (main-
thread) may launch some additional solver-threads to iterate in a 
portion of the problem. The total number of solver-threads does 
not necessarily have to be equal to the number of FPUs. In this 
alternative, the main thread can perform the rest of the tasks that 
are not FPU intensive. 

Our novel idea of separating the code into threads that are FPU 
intensive and threads that are not FPU intensive, all of them 
running at the same time, changes the way the calculation is going 
to converge. It is unlikely that the same problem will have the 
same convergence history in two different runs. Additionally, 
having threads using the FPU constantly will have all pipelines of 
the floating point unit full. This is the first time this technique has 
been applied and is one of the main contributions of our work. 

With these considerations, our proposed algorithm can be stated 
as: 

• Execute a predefined number of solver-threads. They 
iterate on a portion of the problem, calculating the 
maximum increment at the end of any iteration, and 

checking if the maximum numbers of iterations have 
been reached. 

• Use the main thread to monitor convergence, coordinate 
communication between nodes, manage I/O operations, 
and to create restores points as necessary.  

• All nodes perform the same operations, except the 
master node which additionally synchronizes all 
communication operations. 

The basic idea of this solution is that the calculation is overlapped 
with communication and I/O operations, producing important 
savings in computation time. It is convenient to remember that 
MPI operations, even in high-speed networks, require a lengthy 
waiting/transfer time. This waiting time will become more 
significant as the number of nodes increases. 
The tasks of any solver-thread can be stated as: 
1. Get data of corresponding block. 

2. Send signal to the main thread informing it that this thread is 
running. 

3. Initialize solution in block. 
4. Reset maximum increment and number of iterations. 
5. For each point in block: 

5.1 Update solution. 
5.2 Compute maximum increment. 
5.3 Update number of iterations. 

6. If stop condition is activated, quit. 
7. Go to step 4. 

In the second step it is necessary to create synchronization 
between the solver-thread and the main thread. In the Linux 
environments, when a new thread is created, it may not be running 
when control is returned to the calling process. This step is not 
necessary in Windows systems. After some initialization steps, 
any solver-thread will iterate continuously until the stop condition 
is activated. This separation of tasks will optimize the use of the 
FPU. Because any of the solver-threads may not be running at any 
moment, some solver-threads may iterate more than others and/or 
than the maximum predefined number of iterations (needed if 
calculation does not converge). 
Finally, the tasks of the main thread are: 

1. Start MPI. 
2. Perform a general setup. 
3. Start solver-threads. 
4. Wait until all solvers are running. 
5. While stop condition is not activated: 

5.1 Wait until first solver has done one iteration. 
5.2 Exchange data between nodes. 
5.3 If all solver-threads (in all nodes) have converged, 

activate stop condition. 
5.4 If all solver-threads (in all nodes) have 

reached/exceeded the maximum number of 
iterations, activate stop condition. 

6. Write solution. 
7. Finish MPI communications. 



8. End computation. 

The idea behind step 5.1 is to avoid the overload of the network 
from the constant exchanging of data. The main thread (in the root 
node) waits until the first solver-thread has done one iteration, 
while the other main threads just wait for the data. Updating the 
boundary values and recalculating the new ones at the same time 
will make convergence completely different. The solution of a 
linear system is the same no matter what iterative procedure is 
used, or what initial values are set or how the points are updated.  

5. TESTING THE MULTICORE SOLVER 
Before proceeding with the evaluation of the proposed solver, the 
multicore part of the solver will be tested first. The equation to be 
solved is: 

                                       (1) 

With the boundary conditions: 

                      (2) 

The usual way to solve Equation (1) is by finite differences (or 
similar procedures), in which a discrete distribution of points is 
located in space, substituting all derivatives with finite difference 
expressions. In 2D, if all points are equally spaced, the resulting 
equation is: 

             (3) 

Using the iterative procedure SOR, equation (3) is re-written as: 

(4) 

With the value computed in the previous iteration. The over-

relaxation factor  chosen is 1.5, which is not necessarily the 
optimum but enough to speed-up convergence. In all calculations, 
the tolerance was set to 1·10-12. All internal points are initialized 
with the value 0. 
To gain important experimental data on a variety of platforms, we 
evaluated our approach on seven systems: 
S1: Computing node with 2 Intel Xeon, 3.20 GHz, 2 MB cache, 
hyper-threading disabled, Linux operating system and g++ 
compiler version 4.1.2. 
S2: Computing node with 2 Intel i7 quadcore, 3.07 GHz, 12 MB 
cache, hyper-threading disabled, Linux operating system and g++ 
compiler version 4.1.2. 
S3: Workstation with 1 Intel Xeon X5670, 6 cores, 2.93 GHz, 12 
MB cache, hyper-threading disabled, Linux operating system and 
g++ compiler version 4.5.2. 
S4: Computing node with 2 AMD Opteron 248, 2.20 GHz, 1 MB 
cache, Rocks 5.1 / CentOs 5.2 operating system and g++ compiler 
version 4.1.2. 
S5: Front-end node with 4 Intel Xeon, 2.8 GHz, 1 MB cache, 
hyper-threading disabled, Linux operating system and g++ 
compiler version 4.1.2. 

S6: PC with 1 Intel i7 quadcore, 2.80 GHz, 8 MB cache, enabled 
hyper-threading, Cygwin sub-system version 1.7.9 under 
Windows 7 and g++ compiler version 3.3. 

S7: Computing node with 2 Intel Xeon, 3.06 GHz, 1 MB cache, 
enabled hyper-threading, Linux operating system and g++ 
compiler version 4.1.2. 

The first parameter to be determined is the optimum number of 
solver-threads to be set in the multicore solver. This task was done 
by solving a linear system of 122x100 internal equations. Since 
the core idea of this work is the separation of the FPU operations 
and non-FPU operations, problem size should not affect the way 
solver-threads interact with each other. The optimum number of 
solvers was found to be respectively 1, 7, 5, 1, 4, 6 and 3. With 
the exception of system S6, the optimum number of solvers plus 
the main thread is equal to the number of physical threads. In the 
special case of the system S6 can be explained with the fact that 
the Windows 7 system is not designed for high performance 
computing. The rest of the systems are Linux implementations 
specially configured for intensive computations. 
For example, the same code compiled with g++ 3.3 in the Interix 
sub-system always runs 20% slower than in Cygwin running in 
the same machine. Moreover, all codes compiled with Visual C++ 
2010 run 20% slower than in Cygwin. This difference in time is 
very important in high performance computing. 

Once the optimum number of solvers was determined, four 
different tests were performed for any of the systems already 
mentioned: 

T1: Standard serial SOR solver. The classical algorithm was 
coded and it is not necessarily the best implementation. No 
comparison with other possible implementations was done. 
T2: The same as test T1 but with Red/Black ordering. 
T3: Uniprocessor multicore solver. The optimum number of 
solver-threads was determined previously. This is our proposed 
method. 
T4: The same test T3 but with Red/Black ordering. 

 
Table 1: Times for 96,000 equations, system S5 and test T1 

Run Iterations Time (seconds) 

1 16,997 32.361 

2 16,997 32.663 

3 16,997 32.342 

4 16,997 32.642 

5 16,997 32.255 

 

Table 1 shows the times for the benchmark calculation (T1) done 
on the S3 system with 96,000 internal equations. As expected, the 
number of iterations needed in each run is exactly the same.  

Table 2 shows the results of the solution of the same 96,000 
equations, but using SOR with Red/Black ordering (T2). For this 
number of equations, Red/Black ordering speeds-up convergence 
considerably. This behavior is consistent with the ones reported in 
the literature [9]. 

The last column of Table 2 shows the maximum difference of the 
results obtained with SOR-RB and SOR alone. Even though the 



maximum difference is about 10 times larger than the tolerance, 
the results are correct. We would like to emphasize that, when 
solving large linear systems, the maximum difference of the 
solution, in two consecutive iterations, decreases very slowly. For 
this problem, a tolerance of 1·10-12 not necessarily means that the 
solution has 12 correct decimal digits. The opposite is true only 
for small linear systems. 

 
Table 2: Times for 96,000 equations, system S5 and test T2 

Run Iterations Time (seconds) Max.  

1 16,997 19.043 4.13·10-11 

2 16,997 18.011 4.13·10-11 

3 16,997 18.736 4.13·10-11 

4 16,997 17.057 4.13·10-11 

5 16,997 17.527 4.13·10-11 

 

The results with the multicore solver and 3 solvers are shown in 
Table 3, for the same 96,000 equations. 

 
Table 3: Times for 96,000 equations, system S5 and test T3 

Run Iterations Time (seconds) Max.  

1 17,074-17,691 12.475 2.38·10-10 

2 16,902-17,289 11.613 1.10·10-10 

3 16,741-17,323 11.676 1.41·10-10 

4 16,890-17,774 11.960 2.03·10-10 

5 16,931-17,364 11.638 1.23·10-10 

 

The most interesting aspect to underline from Table 3 is that the 
execution times for this new method are considerably lower than 
the tests T1 and T2. This difference leads us to the conclusion 
that, for this case, keeping the FPU full is an effective solution. 
 

 
Figure 1: Speed-up in system S1 versus number of equations 

Figures 1 to 7 show the results of the tests performed in all 
systems. The speed-up reported is calculated with respect to the 
test T1. In all figures, the values are the average of 5 calculations. 

The results can be divided into two different groups. The first 
group consists in tests performed in systems with 2 single core 
processors and two physical threads. The second group of results 
is on systems with at least 3 solver-threads. 

Figures 1 and 4 are the first group of results. There can be 
observed two different behaviors in the speed-up. When the 
problem size fits completely in cache memory, SOR with 
Red/Black ordering has the best performance. 
There are several factors that come into play when determining if 
all the data will fit into the cache. There is the size of the cache, 
size of the data, and number of caches. 
 

 
Figure 2: Speed-up in system S2 versus number of equations 

 

 
Figure 3: Speed-up in system S3 versus number of equations 

 

Having all the data fit in cache legitimately is very rare. Given the 
sizes of scientific calculations it cannot be expected that there will 
be enough cache. Typically the way this will happen is a data set 
designed for a smaller system is used on a larger system that can 
further divide the data. Having data fit in cache when it previously 
didn't can cause super-linear speed-up and is a false comparison. 
For this situation, the multicore solvers show poor performance, 
even if compared with the traditional SOR solver. The Red/Black 
ordering improves performance significantly but it is always 
below the SOR with RB. This is most likely because all of the 
threads in our multicore solver are constantly being swapped out 



by the OS and losing time, while the traditional solver does not 
lose time to this overhead. 

After the problem size exceeds the capacity of cache memory, 
performance of Red/Black ordering decays tremendously. This 
behavior has not been reported in the literature. When solving 
large linear systems, as in DNS/LES, it is not reasonable to think 
that all the data will fit in the cache memory. 
 

 
Figure 4: Speed-up in system S4 versus number of equations 

 

 
Figure 5: Speed-up in system S5 versus number of equations 

 

The second group of results consists in Figures 2, 3, 5, 6 and 7. In 
all cases the tendency is similar and consistent. When the problem 
data fit in cache memory, the Red/Black ordering improves 
performance with respect to the traditional SOR. However, in this 
kind of systems, the multicore solver has better performance and 
it is always constant, no matter the problem size. It is interesting 
to note that Red/Black ordering boosts the performance of the 
multicore solver, but the speed-up collapses immediately as the 
problem data exceed the cache memory. 
 

 
Figure 6: Speed-up in system S6 versus number of equations 

 
From all these results it can be concluded that, for 
multicore/multithreaded systems, the optimum usage of the 
floating point unit is much more effective than trying to optimize 
cache accesses in a serial calculation. 
 

 
Figure 7: Speed-up in system S7 versus number of equations 

6. TESTING THE GENERAL SOLVER 
From the tests of the multicore solver it can be inferred that, in the 
evaluation of the distributed/multicore solver, the two most 
important aspects that will affect performance are the amount of 
equations per node and the communication overhead. The sub-
domain method was selected for the parallelization of the problem 
since allows a complete distribution of data and work load 
between nodes. 
Tests were performed in two different architectures: 
Euler: Cluster with 64 nodes, each one with 2 AMD Opteron 248, 
2.20 GHz, 1 MB cache, Rocks 5.1 / CentOs 5.2 operating system 
and g++ compiler version 4.1.2. MPI: Open MPI. 
Nodes/Processors available for tests: 50/100. Type of 
interconnection: GigabitEthernet (5) 

Hilbert: Cluster with 64 nodes, each one with 2 Intel Xeon dual-
cores, 3.00 GHz, 2 MB cache, disabled hyper-threading, Rocks 
5.1 / CentOs 5.2 operating system and g++ compiler version 4.1.2. 
MPI: Open MPI. Nodes/Processors available for tests: 40/160. 
Type of interconnection: GigabitEthernet (5a) 



Following the same procedure as done in the evaluation of the 
multicore solver, four distributed procedures were evaluated: 

DP1: Standard serial SOR solver with communication performed 
at the end of any iteration. Number of copies of the same code per 
node is 2 in Euler and 4 in Hilbert 
DP2: The same test as DP1 but with Red/Black ordering. 

DP3: Distributed/Multicore solver. Number of solvers per node: 1 
for Euler, 3 for Hilbert (plus the main thread) 
DP4: The same test DP3 but with Red/Black ordering. 
The first set of tests was to evaluate the performance as the 
number of nodes increases but keeping the same amount of 
equations per node. Each predefined number of nodes implies the 
solution of a different linear system, but it will help to understand 
how the previous different procedures perform. As done in the 
multicore solver tests, 5 calculations were performed in order to 
have representative values. 

 
Table 4: Times (in seconds) for 96,000 equations per node in 

cluster Euler 

Nodes DP1 DP 2 DP 3 DP 4 

2 23.681 17.298 25.842 19.855 

4 28.989 22.579 27.595 22.847 

8 45.895 39.515 28.082 26.036 

16 63.610 56.643 28.386 27.800 

32 92.534 86.042 28.540 29.434 

 

Table 4 shows the average times for all tests done with 96,000 
equations per node, and ranging from 2 through 32 nodes. From 
these results, two different readings can be done. The first is by 
observing the results horizontally. In this situation, the linear 
system to be solved is the same in all four tests. As predicted in 
the literature, Red/Black ordering improves the computing times 
in the whole range of nodes. When the number of nodes is small, 
the traditional approach is much better than the new method. On 
the other hand, when the number of nodes is increased, the 
overhead in communication takes an important amount of time in 
the traditional approach. It is very interesting to observe that the 
computing time almost does not change with the new solver. This 
can be explained because, in the new scheme, one processor is 
dedicated exclusively to send and receive data from the other 
nodes, while the other processor is updating values permanently. 

The second reading that can be done to these results is vertically. 
It is true that the linear system solved is different (96,000*2, 
96,000*4, 96,000*8, etc.) but the important increment of 
calculation time in the traditional solver is a good indicator of the 
overhead that the communication produces in the overall 
performance.  It is convenient to remember that, in the traditional 
approach, no calculation is done while performing 
communications between nodes. For the case of 32 nodes, the new 
solver is quite faster than the traditional solver. This big 
difference, caused mainly by the overlap of communication and 
computation, is expected to produce important savings in 
computing time for a large number of nodes, used frequently in 
DNS simulations. 

Table 5 shows the results for 384,000 equations per nodes. This 
number of equations is large enough to exceed the size of cache 
memory. These results are consistent with the ones shown in 
Table 4. Once again, with a small number of nodes, the traditional 
solver performs better than the new one but this tendency is 
reverted as the number of nodes increases. The slower memory 
speed makes the difference in time smaller, but it is expected that 
this magnitude should increase as the number of nodes increases. 
 
Table 5: Times (in seconds) for 384,000 equations per node in 

cluster Euler 
Nodes DP1 DP2 DP3 DP4 

2 66.492 88.116 108.926 195.906 

4 71.005 97.242 109.458 199.931 

8 90.756 111.339 109.848 204.168 

16 113.419 136.368 111.987 204.527 

32 142.855 161.765 115.748 203.245 

 
By observing the results vertically, the overhead in 
communication is consistent in all cases. The new method has a 
small overhead in communication, producing important savings in 
computing times. 
 

Table 6: Times for 192,000 equations per node in cluster 
Hilbert 

Nodes DP1 DP2 DP3 DP4 

2 30.068 20.581 22.291 13.377 

4 46.568 38.876 23.613 14.800 

8 72.374 64.047 25.922 15.690 

16 107.518 96.971 24.597 14.544 

32 167.518 159.298 25.510 14.944 

 
Table 7: Times for 764,000 equations per node in cluster 

Hilbert 
Nodes DP1 DP2 DP3 DP4 

2 78.951 69.543 87.760 106.335 

4 97.567 86.628 89.223 109.984 

8 122.521 110.417 92.248 115.064 

16 161.747 152.855 95.181 116.054 

32 226.555 217.597 97.624 122.404 

 
Looking at Tables 6 and 7, results on the cluster Hilbert have 
similar behavior. It is very interesting that in this quad-processor 
distributed system; there is a big difference in performance when 
the problem is in cache memory. These results confirm our 
hypothesis that having many threads accessing data in the same 
memory bank should produce better performance. In a similar 
manner, performance of our proposal is clearly superior as the 
number of nodes increases. It calls the attention that, in both 



traditional approaches, communication overhead degrades 
performance considerably. 
 

 
Figure 8: Speed-up for 720,000 equations on Euler cluster 

 

Figure 8 shows the speed-up in the solution of 720,000 equations, 
ranging the number of nodes from 10 to 50. This linear system is 
small enough to fit entirely in cache memory in all cases. These 
results are very interesting because, due to the problem size, the 
calculation time is very small; relying performance mainly on 
communication between nodes. 
 

 
Figure 9: Speed-up 6,000,000 equations on Euler cluster 

 

For the traditional solvers, even that this problem size is ideal for 
Red/Black ordering, there is no difference in speed-up between 
solution DP1 and DP2. On the other side, performance of both 
multicore solutions is very good and, eventually, speed-up 
stabilizes as the number of nodes reaches 50. As expected, in all 
these solutions that use global MPI communication operations, 
network speed will impose a limit in the amount of data that can 
be transferred. 

On the contrary, the number of iterations for convergence 
increases permanently in both multithreaded solutions. This issue 
becomes more evident in the solution DP4 and 50 nodes, where 
the number of iterations required increases significantly. Due to 
the fact that, in method DP4, calculation and communication are 

done at the same time, this increment in iterations is basically 
more communication time. For both multicore solutions, the 
additional overhead has little effect on performance in comparison 
with the traditional schemes. 
 

Figure 9 shows the comparison in speed-up for a linear system of 
6,000,000 equations. For this problem size, for a number of nodes 
of 30 and less, data size is larger than L2 cache memory. For a 
number of nodes of 40 and 50, all data fit entirely in cache 
memory. 

For this linear system, performance behavior of the classical 
approaches DP1 and DP2 is similar with reported in the literature; 
with an increasing speed-up and, when a maximum is reached, 
communication overhead produces a small degradation in 
performance. However, the situation is different for the multicore 
solutions DP3 and DP4. When the number of nodes is small, the 
traditional approach is superior but, the multithreaded approach 
DP3 has better performance as soon as the number of processors 
increases. The behavior of the solution DP4, the multicore solver 
with Red/Black ordering, is quite interesting because, for a small 
number of processors, this method has the worst performance of 
all solutions. The just described situation remains unchanged until 
the point in which the amount of nodes imposes an important load 
in the communication lines. Additionally, as soon as the problem 
size fits completely in cache memory, performance of the 
procedure DP4 is boosted considerably. 
  

 
Figure 10: Speed-up for 720,000 equations on Hilbert cluster 

 

For the multicore procedures DP3 and DP4, communication time 
is at most the same calculation time. Since in the multithreaded 
solutions, calculation and communications is done at the same 
time, and considering that the exchanging of boundary values is 
done at the end of the iteration of the first solver, calculation time 
is expected to be larger than system time. 
Figure 10 shows the speed-up for the solution of 720,000 
equations on the cluster Hilbert. For the traditional 
implemmentations DP1 and DP2, performance is quite similar to 
the ones obtained in the cluster Euler. It is very interesting that the 
performance of the new solver (DP3 and DP4) is clearly superior. 

Even that the solution of a small system is not convenient with a 
large number of nodes, the big difference in performance confirms 



that the separation of FPU/non-FPU operations is different threads 
takes the most out of the new architectures. 

Finally, the case of 6,000,000 equations shows some interesting 
results. First of all, the difference in performance of the traditional 
approaches (DP1 and DP2) and the new ones (DP3 and DP4) is 
very big. 
 

 
Figure 11: Speed-up for 7,200,000 equations on Hilbert cluster 
 

In Figure 11 the performance of the standard solvers decays 
permanently, due basically to the communication overhead. For 
the new multithreaded implementations, the difference in 
performance is important between the dual-core cluster and the 
quad-core cluster. These results are consistent with the multicore 
tests; in which our proposal performs better in new architectures.  

As mentioned previously, the sudden change in the way data are 
stored and accessed (from main memory to cache memory), 
makes the procedure considerably faster and cannot be considered 
as a property of the method. This super-linear behavior is a 
combination of multithreaded calculations, data stored in L2 
cache memory and communication of data done at the same time; 
all this in a multicore cluster. 

7. CONCLUSIONS 
A distributed/multicore solver has been proposed to solve a 2D 
Poisson equation. The distribution of tasks in FPU intensive and 
non-FPU intensive threads produces an important improvement in 
performance in the new multicore architectures. The classical 
approach seems the best choice for uniprocessor systems. 
For the distributed/multicore solver, the proposed distribution of 
tasks produces important savings in time as the number of nodes 
increases. 

The Red/Black ordering technique was found to boost speed-up 
only if data fit completely in cache memory. This issue is very 

important because for very large linear systems, is more likely to 
have a big amount of data per node. 

In this work we demonstrated that by having threads that are FPU 
intensive and non-FPU intensive, performance on a single 
processor can be increased. This technique also allowed us to 
make the communication between nodes asynchronous. Our 
approach of decoupling communication and computation allows 
for much greater scalability. Not only are these scientific 
simulations now scalable but they will also be much faster. 
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