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Where is the controller?

Fia, 27, ~Wait's Englne, 1751,



The Feedback Control design paradigm

“Flyball Governor”
for steam engine control
James Watt (ca. 1780)

completely mechanical
“natural” speed regulation

Is there a
Quantum Flyball Governor?

completely quantum mechanical
“natural” quantum error correction
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The System discovers it own Optimal Field

credit- Jon Roslund



Robust optimization with physical model

l = “plant” or “system”

00 _— - 50 C = “controller” or “ancilla”
pp—rt| ,* = N BN = “enwronr_nent or b_ath o
P lQ Vo = “uncertainty modeling constraints
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maximize mina F'(0)

PE—> @ > subjectto 0 € ©
(P.C,E) € A

e local solution via sequential convex optimization 2

e 0 can be parametrization of external control signals and/or internal system
variables, e.g., physical parameters, system-ancilla couplings, geometries, etc.

4A. Mutapcic et al., Engr. Opt., (2009), J. Zhang, R. Kosut, ECC, (2007), S. Boyd, EE364b Lecture Notes,
M. Grace et al.,J.Phys.B,(2007), A. Levi, S. Haas (editors), Optimal Device Design, Cambridge, (2009)



Robust optmization with operator model
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pPp —» AN BN > Pp
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maximize mina F (U4, Up)
subjectto U4, Upg unitary
EeA

e local solution via equivalent bi-convex iterations, e.g., solve for U 4 given Ugp,
solve for U given U 4, repeat ... @

e provides limit of performance
e physical implementation is not accounted

e useful for optimization intialization

aM. Reimpell, R. F. Werner, Phys. Rev. Lett. (2005), N. Yamamoto, S. Hara, K. Tsumura, Phys. Rev. A, (2005), A. S.
Fletcher, P. W. Shor, M. Z. Win, Phys. Rev. A (2007), R.L. Kosut, A. Shabani, D.A. Lidar, Phys. Rev. Lett. (2008), S.
Taghavi, R.L. Kosut, D.A. Lidar, IEEE Trans. Information Theory (2009), R.L.Kosut, D.A.Lidar,Quant. Inf. Proc., (2007)



Solution via Sequential Convex Optimization (SCO)

Initialize
select an initial control 6 € ©
select a sample of uncertain parameters 6, € A, 1 =1,...,L
set “step-size”

Repeat

1. Calculate fidelities, gradients & Hessians with respect to 60
F(6,8:), 9(0,8) = VoF(6,5;), R(0,6) = —V3F(0,6,), i=1,...,L

2. Solve convex optimization for 8 using the linearized fidelity.

.....

3. Update
IF min F(0+0,8) > min F(6,5;)
i=1,..,L i=1,...,.L
THEN 6 «— 6 4 0, increase step-size 3
ELSE decrease step-size 3

Until Stopping criteria satisfied

Validate evaluate F'(0,6va), dval € A = repeat SCO with worst-case samples from 6.



Example

Ht) =60, X +6Z, (k—1)/N<t<k/N, k=1,...,N

Optimal @ 6=2

Robust for 6c[1.8,2.2]
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Control pulses

log, ,(1-F)
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1 2 3 4
pulse number

1.8 2 2.2



Comparison of fidelities (N =4)
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108;10(1 _F)
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H(t) = Hsa(t) @ Ig +wz(Zs + Z4) ® Zg, 0 <t <T
wyz € [0.9,1.1], T € {10, 20}

~——4 X-pulses, wy =1

4 X-pulses, wy € [.9,1.1]
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4 XY Z pulses Sys.+1-Ancilla, wz € [.9,1,1]
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/8 X-pulses, wy =1

4 XY Z-pulses, wz € [.9,1.1]

8 X-pulses, wy € [.9,1.1]
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Extremum Seeking Feedback™
ESF system in the k-th iteration.

estimate of
|%0) —— 3 |Vk) Sensor/ | p1(6) or f(6k)
Quantum Tomography/
5 I O System P Estimation
k I
o Sin wxk
er”
_Update | Low-Pass High-Pass
0,r1 €— Ut ey |[€&——|  Filter Filter  |€—
Sin wxk

“Theory” IF: e f(0,) ~ 1+ (692 (9*)/2) (05, — 0x)2 with & 392 5(6.) < 0

[ w|_|:> < WHP < wWx
o 70‘692 (9*) < 0 and “small”

THEN: 0, — 0,

* K.B. Ariyur & M. Krstic, Real-Time Optimization by Extremum Seeking Feedback, Wiley, 2003.



Example: outcome probability and fidelity vs. control
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e both p1(0) and f(0) vs. 6 peak at the same periodic control values.
e p1(60) has multiple global maxima and no local maxima.
e fidelity f(0) has both, specifically many global maxima and one local maxima.

e for quantum systems the outcomes of these functions are not instantaneously
available, e.g., typically we can record how many times an eigenvalue of an
observable was obtained.



Summary remarks

numerical optimization reveals robust control performance tradeoffs, e.g., con-
trol magnitude, power, energy, bandwidth, temporal and spatial resources,
etc.— requires “uncertainty modeling,’ e.g.,

— knowledge of range of coupling coefficients, bath/environment dynamics
— “hardware” variables, e.qg., bias, scaling effects, classical noise, time constants, etc....

Complementary approach is on-line control tuning

— control protocol must be amenable to performance improvement.
— need “just-right” minimal data for fast estimation

choice of system and control design are interdependent

finally,

still looking for ...
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