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Where is the controller?



The Feedback Control design paradigm

“Flyball Governor”
for steam engine control
James Watt (ca. 1780)

completely mechanical
“natural” speed regulation

Is there a
Quantum Flyball Governor?

completely quantum mechanical
“natural” quantum error correction



Matt James, Ian Petersen, et al.

plant
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controller
(quantum)
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shift

Hersch Rabitz et al.



Robust optimization with physical model
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P = “plant” or “system”
C = “controller” or “ancilla”
E = “environment” or “bath”
∆ = “uncertainty modeling constraints”

maximize min∆ F(θ)
subject to θ ∈ Θ

(P,C,E) ∈∆

• local solution via sequential convex optimization a

• θ can be parametrization of external control signals and/or internal system
variables, e.g., physical parameters, system-ancilla couplings, geometries, etc.

aA. Mutapcic et al., Engr. Opt., (2009), J. Zhang, R. Kosut, ECC, (2007), S. Boyd, EE364b Lecture Notes,
M. Grace et al.,J.Phys.B,(2007), A. Levi, S. Haas (editors), Optimal Device Design, Cambridge, (2009)



Robust optmization with operator model
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maximize min∆ F(UA,UB)
subject to UA, UB unitary

E ∈∆

• local solution via equivalent bi-convex iterations, e.g., solve for UA given UB,
solve for UB given UA, repeat ... a

• provides limit of performance

• physical implementation is not accounted

• useful for optimization intialization

aM. Reimpell, R. F. Werner, Phys. Rev. Lett. (2005), N. Yamamoto, S. Hara, K. Tsumura, Phys. Rev. A, (2005), A. S.
Fletcher, P. W. Shor, M. Z. Win, Phys. Rev. A (2007), R.L. Kosut, A. Shabani, D.A. Lidar, Phys. Rev. Lett. (2008), S.
Taghavi, R.L. Kosut, D.A. Lidar, IEEE Trans. Information Theory (2009), R.L.Kosut, D.A.Lidar,Quant. Inf. Proc., (2007)



Solution via Sequential Convex Optimization (SCO)

Initialize
select an initial control θ ∈ Θ
select a sample of uncertain parameters δi ∈∆, i = 1, . . . , L
set “step-size” β

Repeat

1. Calculate fidelities, gradients & Hessians with respect to θ

F (θ, δi), g(θ, δi) = ∇θF (θ, δi), R(θ, δi) = −∇2
θF (θ, δi), i = 1, . . . , L

2. Solve convex optimization for θ̃ using the linearized fidelity.

maximize min
i=1,...,L

F (θ, wi) + gT(θ, δi)θ̃ − θ̃T [R(θ, δi)]+θ̃/2

subject to θ+ θ̃ ∈ Θ, −β ≤ θ̃ ≤ β
3. Update

IF min
i=1,...,L

F (θ+ θ̃, δi) > min
i=1,...,L

F (θ, δi)

THEN θ ← θ+ θ̃, increase step-size β
ELSE decrease step-size β

Until Stopping criteria satisfied

Validate evaluate F (θ, δval), δval ∈∆⇒ repeat SCO with worst-case samples from δval.



Example

H(t) = θkX + δZ, (k − 1)/N ≤ t ≤ k/N, k = 1, . . . , N
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H(t) = θ
k
X + δ Z, (k−1)/N ≤ t ≤ k/N, k=1,…,N
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H(t) = HSA(t)⊗ IE + ωZ(ZS + ZA)⊗ ZE, 0 ≤ t ≤ T
ωZ ∈ [0.9,1.1], T ∈ {10,20}
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4 X-pulses, ωZ = 1

4 X-pulses, ωZ ∈ [.9, 1.1]

4 XY Z-pulses, ωZ ∈ [.9, 1.1]

4 XY Z pulses Sys.+1-Ancilla, ωZ ∈ [.9, 1, 1]

8 X-pulses, ωZ = 1

8 X-pulses, ωZ ∈ [.9, 1.1]



Extremum Seeking Feedback∗
ESF system in the k-th iteration.

Quantum
System

Sensor/
Tomography/
Estimation

|ψ0〉
estimate of

p1(θk) or f(θk)|ψk〉

eLP
k

θk
θ̂k

θ̂k+1

sinωXk

α sinωXk

High-Pass
Filter

Low-Pass
Filter

Update
θ̂k + γeLPk ×

+

“Theory” IF: • f(θk) ≈ 1 +
(
∂2f
∂θ2k

(θ�)/2
)
(θk − θ�)2 with ∂2f

∂θ2k
(θ�) < 0

• ωLP ≤ ωHP ≤ ωX

• γα∂2f
∂θ2k

(θ�) < 0 and “small”

THEN: θ̂k → θ�

∗ K.B. Ariyur & M. Krstic, Real-Time Optimization by Extremum Seeking Feedback, Wiley, 2003.



Example: outcome probability and fidelity vs. control
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• both p1(θ) and f(θ) vs. θ peak at the same periodic control values.

• p1(θ) has multiple global maxima and no local maxima.

• fidelity f(θ) has both, specifically many global maxima and one local maxima.

• for quantum systems the outcomes of these functions are not instantaneously
available, e.g., typically we can record how many times an eigenvalue of an
observable was obtained.



Summary remarks

• numerical optimization reveals robust control performance tradeoffs, e.g., con-
trol magnitude, power, energy, bandwidth, temporal and spatial resources,
etc.— requires “uncertainty modeling,” e.g.,

– knowledge of range of coupling coefficients, bath/environment dynamics

– “hardware” variables, e.g., bias, scaling effects, classical noise, time constants, etc....

• Complementary approach is on-line control tuning

– control protocol must be amenable to performance improvement.

– need “just-right” minimal data for fast estimation

• choice of system and control design are interdependent

• finally,

still looking for ...
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