
Designing digital circuits for FPGAs using parallel genetic algorithms
Rizwan A. Ashraf1, Francis Luna1, Damian Dechev1,2, Ronald F. DeMara1

1: Department of Electrical Engineering and Computer Science
University of Central Florida

Orlando, FL, USA - 32816
2: Sandia National Laboratories

Scalable and Secure Systems Department
Livermore, CA

rizwan.ashraf@knights.ucf.edu, francis.luna@knights.ucf.edu, ddechev@sandia.gov, demara@ucf.edu

Keywords: FPGA, Synthesis, parallel genetic algorithms,
evolvable hardware, evolutionary electronics

Abstract
Multicore processors are becoming common whereas current
genetic algorithm-based implementation techniques for syn-
thesizing Field Programmable Gate Array (FPGAs) circuits
do not fully exploit this hardware trend. Genetic Algorithm
(GA) based techniques are known to optimize multiple ob-
jectives, and automate the process of digital circuit design. In
this paper, parallel GA algorithms are proposed for the syn-
thesis of digital circuits for LUT-based FPGA architectures.
Parallel modes of the GA such as Master-Slave and the Is-
land model are compared to see which scheme results in bet-
ter speedup and quicker convergence for effectively utiliza-
tion of current multicore hardware. Speedup of about 5 over
the sequential single-threaded implementation are achieved
with both the schemes on six-core machine. Convergence is
also found in fewer number of generations. The methods de-
scribed here-in can be employed in evolvable hardware sys-
tems as well as FPGA CAD tools.

1. INTRODUCTION
The realm of developing electronic circuits via techniques

based on evolutionary principles such as Genetic Algorithms
is referred to as Evolutionary Electronics [22]. Electronic
circuits such as amplifiers, analog and digital filters, digi-
tal circuits (e.g. combinatorial arithmetic circuits, parity cir-
cuits, sequential circuits, etc.) have been synthesized using
such algorithms [1],[11],[22].1 An evolutionary algorithm
based design approach is an excellent tool for optimizing
human-generated designs or synthesizing designs which meet
multiple objectives of power constraints, size constraints in
terms of number of gates required, and timing constraints in
terms of circuit delay [6]. Essentially it automates the pro-
cess of developing electronic circuits and is characterized by

1Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

its ability to search complex solution space. Further, elec-
tronic circuits for reconfigurable hardware such as Field Pro-
grammable Analog Arrays (FPAAs) and Field Programmable
Gate Arrays (FPGAs) can also be configured automatically
[14], [19], [20]. This field, characterized by the use of recon-
figuration techniques for hardware based on Genetic Algo-
rithms, is known as Evolvable Hardware [21]. Adaptive sys-
tems can be realized using such techniques, which can adjust
based on dynamics of the operating environment e.g. tolerate
a failure by self-configuring a fault-tolerant design. The fo-
cus of this work is in the development of configurations for
FPGAs.

Reconfigurable hardware such as FPGAs is an excellent
platform for the application of the above mentioned tech-
niques. A FPGA can be used to implement any given dig-
ital circuit and it can be reconfigured in runtime by using
its dynamic reconfiguration feature [20], thus serving as an
ideal platform for Evolvable Hardware systems. Its architec-
ture is composed of reconfigurable logic and interconnect el-
ements. Reconfigurable logic elements are based on SRAM-
based Lookup Tables (LUTs). Multiple LUTs can be con-
nected via programmable interconnects to implement a de-
sired digital circuit. Adaptive systems based on this platform
can utilize on-chip PowerPCs or use dedicated implementa-
tion in hardware to efficiently implement the genetic algo-
rithm [5],[4]. In such systems, the performance of the genetic
algorithm matters in terms of the time required to converge to
a solution. The current trend in computing is pushing towards
the use of multicore technology, which we intend to exploit
in our implementation. Also with the introduction of FPGAs
which tightly integrate on-chip multi-core processor with the
reconfigurable logic [2] - there is a need to effectively utilize
these parallel processing units for the above mentioned sys-
tems. Further, with the introduction of commodity multicore
processors, the proposed technique can be effectively utilized
for implementation in VLSI CAD tools [3].

Genetic algorithm based applications can be effectively
parallelized to achieve significant speedups and to better uti-
lize parallel processing units. Various attempts have been
made to classify different models of parallel genetic algo-

SAND2012-1462C

lgalleg
Typewritten Text
SAND2012-1462 C

rithms [15],[4]. According to [15], genetic algorithms can be
parallelized based on how fitness is evaluated, whether sin-
gle or multiple populations are used, and whether GA opera-
tions like crossover and selection are performed locally in a
sub-population or globally in the entire population. The au-
thors also suggest that parallel genetic algorithms may per-
form better in terms of the solution found as compared to
their sequential counterparts which may get trapped in the
sub-optimal portion of the solution space. Thus, they have a
better probability of getting out of this local optima as multi-
ple sub-populations will tend to explore multiple portions of
the search space. In this paper, the synchronous master-slave
and island model of the parallel genetic algorithm as intro-
duced in [15] are compared and contrasted for the proposed
problem. We adopt these two models in our implementation.

The main contribution of this work is to design digital cir-
cuits for FPGA-based architectures using parallel genetic al-
gorithms (GAs). The GA employed involves the use of a lin-
ear representation which can be readily employed for intrin-
sic evolution systems such as through direct manipulation of
FPGA configuration bitstream as proposed in [16].

The paper is organized as follows. Section 2 describes the
proposed methodology to parallelize the genetic algorithm
and introduces how such techniques are used for the design
of digital circuits for FPGAs. Section 3 presents the related
works and highlights the unique contributions of this work.
The sequential and parallel implementations are illustrated
and contrasted in section 4. Experimental setup and the re-
sults are presented in section 5. The conclusions of this work
are presented in section 6.

2. ALGORITHM
A genetic algorithm (GA) mimics evolutionary principles

by maintaining multiple candidate solutions in the form of a
population. Each candidate solution, referred to as an individ-
ual, describes a potential FPGA configuration and is initially
generated purely randomly. The representation used will be
described later. Each individual is ranked based on a fitness
value, which is assigned according to the fitness function. The
fitness function is used to quantify the correctness of a given
candidate configuration. In this case it is described via the
truth table of the desired digital function to be implemented
on the FPGA. The genetic algorithm performs the operations
of crossover and mutation on individuals according to user-
specified probabilities, with the intent to increase the fitness
of individuals. After application of these operators, the popu-
lation for the next generation (iteration) is selected based on
some selection scheme. The selection scheme is designed to
guarantee the ”survival of the fittest” i.e. the most fit indi-
viduals make it to the next generation. Tournament-based se-
lection is chosen for this implementation, as described later.
A constant-size population is maintained in this work (finite-

population GA). This process continues over multiple gener-
ations until an individual is found with the required threshold
fitness or maximum number of generations tmax are achieved
according to the described exit criteria. The sequential ver-
sion of the algorithm as described above is summarized in
Algorithm 1.

Algorithm 1 Genetic Algorithm
1: t := 0;
2: Initialize Population P(0);
3: repeat
4: Apply GA Operators (Mutation, Crossover) P′(t);
5: Fitness Evaluation P′(t);
6: Create new Population via Tournament-based Selection P(t +1);
7: t := t +1;
8: until Exit criteria (max Fitness achieved OR max Number of Generations tmax

reached)

An individual, which models a FPGA configuration, is rep-
resented as shown in figure 1 and is adopted from [14]. The
representation contains multiple Lookup Tables (LUTs) as
shown. A fixed number of LUTs are selected for each de-
sign configuration depending on the complexity of the de-
sired digital function. Each LUT has a function and four in-
puts associated with it. Each input of a LUT can be one of
the inputs of the circuit or the outputs from one of the other
preceeding LUTs in the configuration e.g. LUTα in the con-
figuration ∈ {1, ...,n,n + 1, ...,n + α− 1} where n represents
the inputs of the circuit whereas subsequent integers repre-
sents the LUTs in the configuration uptil LUTα. This rep-
resentation ensures feed-forward condition of the design is
maintained, as only combinatorial circuits are evolved in this
work. Each individual also encodes the outputs of the circuit.
The outputs can be from any of the circuit inputs or from the
outputs of the multiple LUTs in the FPGA configuration i.e.
out putβ ∈ {1, ...,n,n + 1, ...,n + x} where x is the maximum
number of LUTs in the configuration.

The fitness of a candidate FPGA configuration which quan-
tifies its correctness is calculated by exhaustively applying all
the possible input combinations e.g. 8 test vectors are applied
for a circuit with 3 inputs. For each input combination, the
output(s) of the candidate individual is (are) evaluated and
compared with the original required output(s) as described in
the truth table of the digital function to be implemented. Bit-
wise comparison is done in this case, incrementing the fit-
ness value with each output line match. This is accumulated
over all possible input combinations. As an example a cir-
cuit with n inputs and m outputs will have a maximum fitness
of 2n ∗m which indicates that every output line of the circuit
matches the desired output for every possible input combina-
tion. Other fitness functions are also possible e.g. by taking
the arithmetic difference between the desired and actual out-
put(s) accumulated over all possible input combinations and
which involve selective test vectors evaluation instead of ex-
haustive evaluation of all possible input combinations.

Figure 1. An individual: The representation of FPGA con-
figuration in GA

The notion of population in genetic algorithms makes them
an ideal candidate for parallelization. The classification of
parallel versions of the GA into synchronous master-slave
and island model is adopted in this work. The main classifica-
tion is based on how the population is partitioned for various
phases of the algorithm. For both classes, the fitness evalu-
ation is done in parallel for a group of individuals. The GA
operation of crossover is a binary operator thus it requires
two indivduals to be selected from the population at a user-
specified crossover-rate as opposed to the mutation opera-
tor which requires only one individual. Similarly, the selec-
tion phase requires other individuals from the population e.g.
tournament-based selection requires a pool of individuals to
perform the competition based on fitness where most-fit in-
dividuals are selected for next generation. The master-slave
employs a single population for its various operations as op-
posed to the island model which employs multiple indepen-
dent sub-populations (demes). For example, the two individu-
als for the crossover operation can be randomly selected from
the complete population in case of master-slave whereas in
case of island model they are selected from within a sub-
population (locally). Similarly, the pool of individuals (the
size of which is user-specified) required for the tournament
selection is formed from the complete population in case of
master-slave whereas in case of the island model it is se-
lected from within a sub-population. The selection pressure
in case of island model is different as compared to the master-
slave model as individuals in the master-slave model compete
against the complete population. A single best individual is
maintained for the whole population in case of master-slave
model as opposed to the island model. The sub-populations
involved in the island model each maintain their own best
fit individuals and migration of best-fit individuals only take
place if the best fit individual of a sub-population has a lower
fitness value than any other sub-population’s best fit individ-
ual. The frequency of these migrations may be as high as ev-
ery generation. The salient features of the two schemes are
highlighted in Table 1.

Sync Master-Slave Island Model
Number of Population(s) Single Multiple ρ

Number of Individuals
in a Population N N

ρ

Crossover Operation Global Population Local Population

Selection Operation Global Population Local Population

Table 1. Highlights of the main differences among the Island
and the Master-Slave parallel models with ρ parallel proces-
sors

3. RELATED WORK
Parallel Genetic Algorithms have been used for the design

of digital [8] and analog circuits [1],[11]. GAs in general are
known to solve multi-objective optimization problems and
thus can be efficiently employed in the field of electronic
circuit design [10] where often multiple constraints such as
power, size, and timing have to be accomplished. It can also
be used to automate the process of circuit synthesis which has
useful applications in the field of evolvable hardware, where
a design may need to be adapted at runtime to meet new re-
quirements [7] or produce diverse designs which can be em-
ployed in a fault-tolerant system as proposed in [19]. In addi-
tion, GAs are also employed in VLSI layout tools for optimal
placement and routing [13]. In this work, we focus on the de-
sign of digital circuits for the FPGA platform.

Design of analog circuits such as amplifiers and filters has
been the focus of most works which employ parallel genetic
algorithm [1],[11], as the fitness evaluation in this case is con-
sidered to be the most computationally expensive part. Syn-
chronous master-slave implementation is employed in [12]
and the workload of fitness evaluation is distributed off to
slave nodes; fine-grain partitioning is done and a small num-
ber of configurations are evaluated by slave nodes at any
given time, which potentially results in increased stall times.
The experimentation for the above mentioned work is per-
formed on a Beowulf cluster. Similarly, GA is parallelized in
[1] to evolve simple VLSI circuits; coarse-grain parallelism
is done using a shared memory programming model. Differ-
ent implementations with a centralized single population and
multiple distributed populations are done for the parallel GA
in this case. The distributed scheme proposed in [1] involves
infrequent communication among populations, whereas the
island model proposed in our work involves communication
at every generation and a possible migration is done if the
sub-population has less fit individuals as compared to other
competing sub-populations. Nearly linear speedups are re-
ported for the different implementations in [1], though the
results are limited and thus it is difficult to establish the gen-
erality of this work, e.g. speedups are only reported with 16
parallel computing units. Whereas, in our work, extensive ex-
perimentation with different number of threads is done, using
both the synchronous master-slave and island model of the
parallel GA.

In [8], digital circuits are designed using multi-expression
programming. The representation employed in [8] is a vari-
ation of linear genetic programming, whereas our work em-
ploys a representation which is targeted for FPGA-based ar-
chitectures. Asynchronous island model is employed in [8],
where sub-populations are maintained on parallel machines
which exchange individuals after a certain defined period (de-
sign time). The idea is to evolve multiple genetic programs
in parallel on multiple processors. The computing nodes are
connected in a ring topology and the message passing pro-
gramming model is employed for communication between
different nodes. Results show a considerable decrease in com-
putational effort as compared to the non-parallel GA. In our
work, as mentioned earlier, FPGA-based architectures are tar-
geted, and comprehensive comparison is done between the
synchronous master-slave and the island model. The island
model employed in our work is different as compared to
[8], as the best individual in our work may be communi-
cated to sub-populations on every generation. Further, most
of the implementations have been done on clusters of com-
puters whilst using the MPI programming model [8],[12] and
look to exploit the characteristics of a group of individuals
by creating sub-populations which are evolved independently
for many generations (this number is generally fixed) with
little or no communication. Whereas, we have proposed the
parallel models of the GA on a shared memory machine for
targeting todays multicore processors.

4. IMPLEMENTATION
4.1. Sequential Implementation

The following sections present a bottom-up overview of the
classes and functions that form the sequential program. These
parts are reviewed in this section so as to see which portions
could be made parallel and to see which parts might be prob-
lematic when they are made to work in parallel. We start from
the smallest unit, the LUT object, and work our way up to the
largest, a Generation. Finally, we review the main function to
see how the algorithm works in this implementation.

4.1.1. LUT class
Each LUT object contains three vectors and its func-

tion type ∈ {NOT,AND,NAND,OR,NOR,XOR}. The vec-
tors contain information about which LUT outputs are con-
nected to the LUT inputs, the input binary values of these
connections into the LUT, and the output value from the LUT.

4.1.2. CLB class
Each Configurable Logic Block (CLB) object contains

multiple LUT objects. This class contains a vector of LUTs
(i.e. {LUT1,LUT2, ...,LUTCLB max}, where CLB max is the
number of LUT objects in a CLB). The size of this vector
can be set by the user.

4.1.3. Individual class
Each individual (circuit) contains four vectors, a fitness

value, and various functions. The first vector is of CLBs that
the circuit uses. The other three are the inputs, outputs, and
connections of the circuit. The main function from this class
is the CalculateFitness function which goes through
each LUT for each CLB and calculates each output value.
It then compares these outputs with the expected value and
assigns a fitness value to the individual by incrementing it’s
fitness, starting at zero, for every output that is correct.

4.1.4. Generation class
The generation object consists of a vector of Individuals,

the generation number, and an index to keep track of the Indi-
vidual having the maximum fitness. It also contains the func-
tions for the genetic algorithm.

The PerformCrossover function, according to the
crossover rate (probability of performing crossover), takes
two individuals and randomly picks a crossover point, such
that the boundaries of LUT objects are not violated. The LUT
configurations before this point on Parent A and after this
point on Parent B are copied to the offspring as shown in fig
2. If no crossover is to take place, the individual is just copied
to the other individual.

Figure 2. The application of crossover operator between two
individuals.

The PerformMutation function performs three types
of mutation on one individual. The first type is functional-
ity mutation where it takes the individual and for each se-
lected LUT based on a user-defined mutation rate, randomly
changes its function. The second type is interconnection mu-
tation where it takes each selected LUT of the individual and
randomly changes its input connections. Finally, it performs
output line mutation where the output lines of the individual

are randomly assigned to either the inputs of the circuit or any
of the LUTs in the configuration.

The Selection function randomly selects k (Tourna-
ment Size) individuals from both the parent population (cur-
rent generation) and the offspring population (evolved indi-
viduals). From this selection, the best fit individual is picked
to move on to the next generation. This is repeated until a new
generation of the same size is formed.

The PerformElitism function copies the individual
with maximum fitness in order to preserve it and maintain
forward progress.

4.1.5. Main-The GA loop
The main function performs all the steps necessary for the

implementation of the genetic algorithm. Firstly, individuals
from the generation are chosen to have the genetic operators
performed on them based on a user-defined probability. None
of these operators directly modify the parent population; they
simply modify a copy of the individual (offspring) which is
then stored. For crossover, two random individuals are chosen
from the parent population for crossover to perform on. After
crossover and mutation take place, the fitness for the new off-
spring is calculated. This is repeated until all the individuals
of the population have been evolved. Then selection is per-
formed where individuals from the parent and offspring pop-
ulations are chosen to form the new population. Then Elitism
takes place. If there exists an individual with higher fitness
than the elite individual, then that individual becomes the new
elite and it replaces the old elite. If the highest fitness is less
than the fitness of the elite individual, the elite individual is
copied to the population, replacing a randomly chosen indi-
vidual. The generation number is incremented and this proce-
dure is then repeated until the desired fitness level is achieved.
The program flow is outlined in fig 3.

4.2. Parallel Implementation
Understanding how the sequential program works allows

us to parallelize the portions of it that would be most bene-
ficial to the overall runtime. Two different models were used
in the parallel versions of the program. The first, the master-
slave model, has one master thread that calls the parallel func-
tions. These functions operate on the entire population by par-
titioning the full population into sub-populations that each
thread can operate on. The second, the island model, parti-
tions the population in smaller sub-populations at the begin-
ning of the GA loop. The functions used here are not parallel
versions, they just operate on a smaller portion of the popu-
lation. Each thread iterates through one instance of the GA
loop independently of one another. These two models were
used to determine if one achieved better speedup and perfor-
mance than the other.

Figure 3. Program flow.

Figure 4. A generation with a population size of N

4.2.1. Master-Slave model
The portions that are made parallel in the master-slave

model are within the GA loop, where the program spends
most of its time running. More specifically the parts we
parallelize are: the portion where genetic operators are per-
formed, the Selection routine, and the portion that updates
the maximum fitness. We did not want to change how the al-
gorithm functioned and therefore only divide the population
into smaller sub-populations that each thread will work on as

shown in fig. 4. These populations are divided evenly when
genetic operators are performed, then combined once it is
completed, divided once again when selection is performed,
then combined, then divided again to search for the individual
with highest fitness, updating the global value when a higher
fit individual is found. This layout is shown in fig 5.

Figure 5. Master-Slave Population partitioning.

4.2.2. Island model
The GA loop is partitioned and made to run in parallel in

the island model of the program. Each island (thread) calls
the GA operators, selection, and determines the maximum fit-
ness on their own sub-population. If any of the islands have
a higher fit individual than the elite, that individual becomes
the new elite and it gets distributed to the other islands at the
end of a generation. This layout is shown in fig 6.

Figure 6. Island Population partitioning.

4.2.3. Library
A library that provided the following had to be chosen for

the parallel versions of the program:

• concurrent vectors

• parallel loops

• locks

Since the sequential implementation used vectors through-
out its implementation we needed to find a concurrent vec-
tor implementation that multiple threads can safely access
at one time. We also needed an easy construct to parallelize
the portions highlighted as well as an implementation of a
lock which can be used to find the global max fitness. After
some research we settled on Intel Threaded Building Blocks
(TBB) [18] because it contained everything needed in an easy
to use library. We have used constructs of parallel for,
concurrent vector, and mutex for our parallel imple-
mentations.

The TBB concurrent vector will replace any STL
vector that will be accessed by more than one thread at a time.
It guarantees that elements in the vector will never move until
it is cleared which is needed in this implementation.

The TBB spin mutex will be used to place a lock on the
maximum calculated fitness and which individual it is. In or-
der to reduce contention of the lock, it will only be grabbed
when the new fitness of an individual is better than the current
individual with maximum fitness. The spin mutex version
of a lock was chosen because the amount of time that the
lock will be held is relatively short. Only two variables are
required to be updated so there are very few operations that
will be performed in the critical section. The overhead for
other lock implementations will not be beneficial in our de-
sign. Also, this lock is not always acquired so contention will
be low. It is only acquired when there is a higher max fitness
than the one stored. After the lock is acquired, it checks this
condition again to ensure no one has changed this value since
before the lock was acquired and updates the values accord-
ingly. This method of checking whether to grab the lock first,
and then checking the conditions again, will greatly decrease
the contention on that lock since it will only be acquired when
needed as opposed to always grabbing the lock and then do-
ing the comparison. This technique is mentioned in [9]. The
following is an example from the code:
i f (M a x C a l c u l a t e d F i t n e s s < I n d i v i d u a l (x) F i t n e s s)
{

F i t n e s s M u t e x . l o c k () ;
i f (M a x C a l c u l a t e d F i t n e s s < I n d i v i d u a l (x) F i t n e s s)
{

M a x C a l c u l a t e d F i t n e s s = I n d i v i d u a l (x) F i t n e s s ;
i M a x I n d i v i = x ;

}
F i t n e s s M u t e x . un l oc k () ;

}

5. EXPERIMENTS AND RESULTS
5.1. Experimental Setup

Experiments are done to evaluate the speedup and perfor-
mance of the parallel implementations as compared to the se-
quential (single-thread) implementation as used in [17]. The
genetic algorithm is supposed to start-off with completely
random configurations as described earlier. Further, the GA
operators are applied to configurations based on user-defined
values. Similarly, the selection operation is performed on a
pool (tournament size). We keep track of timestamps through-
out the program in order to compute the speedups of the por-
tions we parallelized and the entire program.

Experiments were conducted with population sizes of 120,
240, 480, and 960. The effect of population sizes on the
speedups is to be observed. Each test was run 20 times for
averaging. The objective of the experiments was to realize a
3-to-8 decoder configuration for a LUT-based FPGA archi-
tecture. Mutation and crossover rates were set to 0.007 and
0.60 for all the experiments and for both models. A fixed
tournament size of 6 is used for all population size experi-
ments. The experiments are run for a fixed number of gener-
ations (1000) to calculate the speedups. To measure GA per-
formance, each test is run until a maximum fit individual is
found and the number of generations it took to find this indi-
vidual is recorded.

All tests were run on an Intel Xeon X5670 (6 cores) with
6GB RAM running Ubuntu 11.04 with Intel TBB version 3
update 5 [18]. The speedup and performance of the imple-
mentations are calculated with 2, 4, 6, 8, 12 and 16 threads.
This effectively partitions the population size by the thread
count into smaller subpopulations that each model uses.

5.2. Results
5.2.1. Speedup
Speedup over the sequential version of the algorithm was

achieved, however the problem is observed to not be per-
fectly parallelizable. Figure 7 details the speedup achieved for
the master-slave model with respect to varying thread count.
The highest speedup achieved by the master-slave model is
5.01 with a population size of 960 running on 6 threads. The
speedups for this model are fairly linear with the threshold
being the physical number of cores the threads can run on,
which in our setup was 6. After this limit is reached, the
speedup is decreased as thread count increases. Also, larger
problem sizes achieve higher speedup because the amount of
computation in each thread outweighs the amount of commu-
nication in these cases. Figure 8 details the speedup achieved
for the island model with respect to varying thread count.
The highest speedup achieved by the island model is 5.04
with a population size of 960 running on 16 threads. Al-
though the number of threads is larger than the number of
available cores, a higher speedup is achieved than the master-

slave model. The speedup of the smaller populations begin to
saturate while the speedup of larger populations continue to
increase as thread count increases. This is unlike the master-
slave model where speedups start to decrease after a certain
threshold. Also, the speedups of all the population sizes are
fairly close to one another with less variance between the pop-
ulation sizes than for the master-slave model.

Figure 7. Speedups achieved with sync master-slave model

Figure 8. Speedups achieved with Island model

5.2.2. GA Performance
Both models converged to find a perfect fit individual in all

the runs within the maximum number of generations set as
threshold for the experiments. The island model converged in
fewer generations than the master-slave model for all popula-
tion sizes as shown in figure 9.

6. CONCLUSION AND FUTURE WORK
Two models for parallelizing the genetic algorithm used

for realizing configurations for LUT-based FPGA architec-
tures were successfully realized. Results indicate speedups of
approximately 5 are achieved for both the parallel modes of
the genetic algorithm on a machine with six physical cores.
In addition to achieving speedup over the sequential imple-
mentation, it was observed that using the island model for
parallelizing this problem actually allowed the genetic algo-
rithm to converge and find a maximum fit individual in fewer

0

5000

10000

15000

20000

25000

ms island ms island ms island ms island

ge
n

e
ra

ti
o

n
s

generations to find max fitness

2 Threads

4 Threads

6 Threads

8 Threads

10 Threads

12 Threads

14 Threads

16 Threads

Figure 9. Comparison of Convergence Properties of
Master-Slave and Island Models

generations than the master-slave model. This results in the
genetic algorithm running for less time.

Other areas of the algorithm could be explored in order
to optimize them and make the parallel performance better.
One such area is the fitness calculation which is inherently
sequential, and could be improved by evaluating independent
test vectors in parallel. Various parameter settings can also be
tried to improve GA convergence properties.

REFERENCES
[1] M. Davis, L. Liu, and J. Elias. VLSI circuit synthesis using

a parallel genetic algorithm. In Evolutionary Computation,
1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on, pages 104–109.
IEEE, 1994.

[2] K. DeHaven. Extensible Processing Platform Ideal Solution
for a Wide Range of Embedded Systems. Technical report,
Xilinx, 04 2010.

[3] R. Drechsler. Evolutionary algorithms for VLSI CAD. Kluwer
Academic Publishers, 1998.

[4] S. E. Eklund. A massively parallel architecture for distributed
genetic algorithms. Parallel Comput., 30:647–676, May 2004.

[5] P. Fernando, S. Katkoori, D. Keymeulen, R. Zebulum, and
A. Stoica. Customizable fpga ip core implementation of a
general-purpose genetic algorithm engine. Evolutionary Com-
putation, IEEE Transactions on, 14(1):133 –149, feb. 2010.

[6] F. Ferrandi, P. Lanzi, G. Palermo, C. Pilato, D. Sciuto, and
A. Tumeo. An evolutionary approach to area-time optimiza-
tion of fpga designs. In Embedded Computer Systems: Ar-
chitectures, Modeling and Simulation, 2007. IC-SAMOS 2007.
International Conference on, pages 145 –152, july 2007.

[7] P. Haddow and G. Tufte. An evolvable hardware fpga for adap-
tive hardware. In Evolutionary Computation, 2000. Proceed-
ings of the 2000 Congress on, volume 1, pages 553 –560 vol.1,
2000.

[8] F. Hadjam, C. Moraga, and M. Benmohamed. Cluster-based
evolutionary design of digital circuits using all improved
multi-expression programming. In Proceedings of the 2007
GECCO conference companion on Genetic and evolutionary
computation, pages 2475–2482. ACM, 2007.

[9] M. Heinrich and M. Chaudhuri. Ocean warning: avoid drown-
ing. SIGARCH Comput. Archit. News, 31:30–32, June 2003.

[10] T. Kalganova and J. Miller. Evolving more efficient digital cir-
cuits by allowing circuit layout evolution and multi-objective
fitness. In Evolvable Hardware, 1999. Proceedings of the First
NASA/DoD Workshop on, pages 54 –63, 1999.

[11] J. Lohn, G. Haith, S. Colombano, and D. Stassinopoulos. To-
wards evolving electronic circuits for autonomous space appli-
cations. In Aerospace Conference Proceedings, 2000 IEEE,
volume 5, pages 473–486. IEEE, 2000.

[12] J. D. Lohn, S. P. Colombano, G. L. Haith, and D. Stassinopou-
los. A Parallel Genetic Algorithm for Automated Electronic
Circuit Design. Technical report, NASA, 2000.

[13] P. Mazumder and E. M. Rudnick. Genetic algorithms for VLSI
design, layout & test automation. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1999.

[14] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evo-
lutionary design of digital circuits. Genetic Programming and
Evolvable Machines, 1:7–35.

[15] M. Nowostawski and R. Poli. Parallel genetic algorithm tax-
onomy. In L. C. Jain, editor, KES, pages 88–92. IEEE, 1999.

[16] R. Oreifej, R. Al-Haddad, H. Tan, and R. DeMara. Layered
approach to intrinsic evolvable hardware using direct bitstream
manipulation of virtex ii pro devices. In Field Programmable
Logic and Applications, 2007. FPL 2007. International Con-
ference on, pages 299 –304, aug. 2007.

[17] R. S. Oreifej, C. A. Sharma, and R. F. DeMara. Expedit-
ing ga-based evolution using group testing techniques for re-
configurable hardware. In Reconfigurable Computing and
FPGA’s, 2006. ReConFig 2006. IEEE International Confer-
ence on, pages 1 –8, sept. 2006.

[18] J. Reinders. Intel threading building blocks, 2007.

[19] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud, and
A. Thakoor. Reconfigurable VLSI architectures for evolvable
hardware: from experimental field programmable transistor ar-
rays to evolution-oriented chips. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 9(1):227–232, 2001.

[20] A. Upegui and E. Sanchez. Evolving hardware by dynamically
reconfiguring xilinx fpgas. In ICES’05, pages 56–65, 2005.

[21] X. Yao and T. Higuchi. Promises and challenges of evolvable
hardware. Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, IEEE Transactions on, 29(1):87 –97, feb
1999.

[22] R. S. Zebulum, M. A. C. Pacheco, and M. M. B. R. Vellasco.
Evolutionary Electronics: Automatic Design of Electronic Cir-
cuits and Systems by Genetic Algorithms, volume 1. CRC
Press, 2002.

