
A Lock-Free Concurrent Hash Table for Effective
Information Storage and Retrieval on Large Data Sets

Steven Feldman, Pierre LaBorde, and Damian Dechev
University of Central Florida Scalable Computing R&D Department
Orlando, FL 32816 Sandia National Laboratories, Livermore, CA 94550
{Feldman, pierrelaborde}@knights.ucf.edu ddechev@sandia.gov

Abstract
The purpose of this work is to develop a lock-free hash
table that allows a large number of threads to concurrently
insert, modify, or retrieve information. Lock-free or non-
blocking designs alleviate the problems traditionally
associated with lock-based designs, such as bottlenecks and
thread safety. Using standard atomic operations provided by
the hardware, the design is portable and therefore,
applicable to embedded systems and supercomputers such
as the Cray XMT. Real-world applications range from
search-indexing to computer vision. Having written and
tested the core functionality of the hash table, we plan to
perform a formal validation using model checkers.

1. Introduction
The ISO C++ Standard [5] does not mention concurrency or
thread-safety (though it's next revision, C++0x, will [1]).
Nevertheless, ISO C++ is widely used for parallel and
multi-threaded software. Developers writing such programs
face challenges not known in sequential programming:
notably to correctly manipulate data where multiple threads
access it. Currently, the most common synchronization
technique is to use mutual exclusion locks. A mutual
exclusion lock guarantees thread-safety of a concurrent
object by blocking all contending threads except the one
holding the lock. This can seriously affect the performance
of the system by diminishing its parallelism. The behavior
of mutual exclusion locks can sometimes be optimized by
using fine-grained locks or context-switching. However, the
interdependence of processes implied by the use of locks --
even efficient locks -- introduces the dangers of deadlock,
livelock, and priority inversion. To many systems, the
problem with locks is one of difficulty of providing
correctness more than one of performance.
The widespread use of multi-core architectures and the
hardware support for multi-threading pose the challenge to
develop practical and robust concurrent data structures. The
main target of our design is to deliver good performance for
such systems (see Performance Evaluation). The use of
non-blocking (lock-free) techniques has been suggested to
prevent the interdependence of the concurrent processes
introduced by the application of locks [4]. By definition, a
lock-free concurrent data structure guarantees that when
multiple threads operate simultaneously on it, some thread
will complete its task in a finite number of steps despite
failures and waits experienced by other threads. The
creation of a lock and wait free concurrent hash table will
improve database performance due to the commonplace

occurrence of multiple threads and users accessing the same
tables at the same time.1
This paper presents a design for a lock-free, wait-free,
extendible hash table which avoids new array allocation
through the use of a bounded number of indirections. The
design includes dynamic hashing, meaning each element
has a unique final and current position.

2. Design Principles
In designing the algorithm for the hash table we wanted to
achieve a variety of design goals.
(a) Lock-Free/Non-Blocking: insure that no single thread
can prevent another from accessing information.
(b) Wait-Free: guarantee that at least one thread is making
progress at any point in time, which implies that all tasks
will finish in a set amount of operations.
(c) Perfect Hashing: each element has a unique final
position in the table, and this position lets the algorithm
insert, find, or delete elements concurrently.
(d) Atomic Operations: available on all modern
architectures, are the only operations used when modifying
the table.
(e) Thread Death Safety: if a thread were to suddenly die,
regardless of the point during its execution, no data would
be lost, with the sole exception of the threads own
operation.

3. Implementation
In order to achieve our design goals, we are developing an
innovative approach to the structure of the hash table,
inspired by Ori Shalev and Nir Shavit, Split-Ordered Lists:
Lock-Free Extensible Hash Tables [6].
The hash function we use is a one-to-one hash, where each
key produces a unique value. The hash function that we use
reorders the bits in the key, promoting a more even
distribution of keys. The length of the memory array used
in the table is a power of two. By taking the first X bits of
the hash, where X is a value such that 2X is equal to the
length of the memory array, we determine the location to
place the key-value pair.
The hash table can be composed of multiple arrays, where a
position in one points to another. However the total number
of arrays is bounded by the key length and the size of each
array. When referring to indirections we mean the number
of entries one might need to check before a key is found.
The maximum number of indirections caused by going

1 Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.

SAND2012-1524C

lgalleg
Typewritten Text
SAND2012-1524 C

from one array to another is equal to the number of bits in
the key divided by X, where X is the number of bits taken
from the key, as described earlier. An example for a 32-bit
key with an array of length 64, would have at most seven
indirections. Users could choose a much larger length for
the memory array, which will further decrease the number
of indirections caused by going from memory array to
memory array.
In the event that the position that a keys hashes to is
occupied, and no valid spot can be found whilst probing.
Then a new memory must be made. When the new memory
array is added to the table, then all elements will that belong
at the position that points to this memory array, will be
moved into it.
By allowing concurrent table expansion this structure is free
from the overhead of an explicit resize that involves
copying the whole table, thus facilitating concurrent
operations. Moreover, some related algorithms, such as the
implementations of Cliff Click [2] and that of Gao, Groote,
and Hesselnik [3], allow stacked resizes; which can lead to
starvation of one or more threads. Similar algorithms have
been devised; however, their respective performances have
not provided enough incentive for widespread adoption.
By allowing concurrent table expansion this structure is free
from having to allocate space for a new table and copying
over the information from the previous table, thus
facilitating concurrent operations.

4. Operations
This section presents the generalized pseudo-code of the
implementation and omits code necessary for a particular
memory management scheme.
For the purpose of explaining the algorithm, keys will be
written as (A-B-C...), where A is the position that the key
belongs in on the top-most memory array, B is the memory
array pointed to by position A in memory on top-most
array, and so on. In addition the word ``local'' will refer to
the memory array that the thread is currently examining. It
will, unless otherwise stated, always start as being the main
array.
Insert There are several types of nodes. The two basic
types of nodes are a ``spine node,'' which is a memory array
that can consist of pointers to other spine nodes or data
nodes, and a ``data node'' which is a node that holds a key-
value pair. There are also several other types used for
special cases. When a thread requests that a node be
deleted, the type of that node is changed from data Node to
``deleted node'' or ``soft deleted node,'' depending on its
location. An ``unreachable node'' is a node that if searched
for, by its key, cannot be found. The case wherein this can
happen is generally rare, and it will be explained in detail
later. A ``spine node,'' is initially a ``new spine node,''
which is used to allow other threads working in the same
area to work concurrently. The reasons for changing
between the states will be explained later in this section.
In order to insert a node, the key is hashed and the first X
bits are retrieved from the hash value. Remember that X is
such that 2X equals the length of the memory array. Let
``significant node'' be the node pointed to by position X on
local. If it is a ``spine node,'' it will set local equal to
``significant node,'' and look at the next X bits, and get a
new ``significant node.'' It will continue this until

``significant node'' is a non-``spine node.'' If a ``new spine
node'' is reached then the thread will help finish creating the
``new spine node,'' which will be described in its own
section. After this, the ``significant node'' will no longer be
a ``new spine node,'' and as such it will set local equal to
``significant node,'' look at the next X bits, and get the new
``significant node.'' At this point, if ``significant node'' is
``null,'' ``deleted node,'' ``soft deleted node,''
``unreachable,'' or a key match we will simply CAS
``significant node'' for our node. If the CAS fails then we
re-examine the ``significant node.'' If it passes, then we
return out of the insert function.
Creating a Spine Node The process of creating a ``spine
node'' starts by the thread allocating a ``new spine node,''
placing the node currently at the location we want to make
the spine, and if its node belongs at that location, its node as
well. It then Compare-and-Swaps the current node for the
``spine node.'' If this CAS fails, and the new current node is
a ``new spine node,'' then it will help create the spine node,
returning the result of this. If it is a spine node, then it will
return false, letting the thread that called this know that its
node was not inserted.
Find The retrieval of a value using a key is a simpler
process. Not only is it natural, that find is the simplest of
the operations, but it is also necessary because find
operations are the most pervasive in real-world applications
of this kind of data structure. If the ``significant node'' is a
``spine node,'' it will set ``local'' equal to ``significant
node,'' and look at the next X bits, and get a new
``significant node.'' It will continue this until ``significant
node'' is a non-``spine node.''
In the event of a ``new spine node'' there are two options.
The first option is that the thread will help finish creating
the ``new spine node.'' After this, the ``significant node''
will no longer be a ``new spine node,'' and as such it will set
local equal to ``significant node,'' look at the next X bits,
and get the new ``significant node.'' The second option is
that we will probe down, looking for a key match. If a key
match is found, the thread will return out of the find
method. If it is not found then it will check the ``new spine
node.'' We chose the second option, because we felt it
would improve performance of the find function, and the
insert function will have less contention on the CAS
operation.
If ``significant node'' is a key match, then it will simply
return the value. However if it is not a key match, the the
thread will probe the memory array, until a key match is
found or it has circled back to the start position. If
``significant node'' is ``null,'' ``deleted,'' ``unreachable,'' or
not at its proper position, then the thread returns false,
because we have the guarantee that if there is a node that is
not at its proper position then the node that is at our node’s
proper position is at its proper position. Furthermore, if a
node is to be deleted, and it is at its proper position, then its
type will be changed to ``soft deleted node.'' This will be
explained in depth in the section on the deletion process.
Deletion The delete method is similar to the find method.
Cleanup It is possible for a thread to insert a value into the
table, and have that thread find a valid spot before it reaches
a key match; which could lead to inconsistencies. In order
to prevent this, we implement a bit that indicates to other
threads whether or not this node is ``in clean up.'' ``Clean

up'' is the procedure of probing down from the position that
the node was inserted at, until it reaches the proper position,
or the bit has been changed to false, all the while removing
key matches.

References

[1] P. Becker. Working Draft, Standard for Programming
Language C++, ISO WG21N2009, April 2006. URL
http://www.open-std.org/JTC1/SC22/WG21/.

[2] C. Click. A lock-free hash table, 2007.

[3] H. Gao, J. F. Groote, and W. H. Hesselink.
Almost wait-free resizable hashtables. In
Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, page 50. IEEE, 2004. ISBN 0-
7695-2132-0. doi: http://dx.doi.org/10.1109/IPDPS.2004.1302969.

[4] M. Herlihy. A methodology for implementing highly
concurrent data objects. ACM Trans. Program. Lang.
Syst., 15(5):745{770, 1993. ISSN 0164-0925.

[5] ISO/IEC 14882 International Standard. Programming
languages C++. American National Standards Institute, September
1998.

[6] O. Shalev and N. Shavit. Split-ordered lists: lock-free
extensible hash tables. In PODC '03: Proceedings of
the twenty-second annual symposium on Principles of
distributed computing, pages 102{111, New York, NY,
USA, 2003. ACM Press. ISBN 1-58113-708-7. doi:
http://doi.acm.org/10.1145/872035.872049.

