SAND2012-1523 C

A Compiler-based Framework for SAND2012-1523C
Extraction of Software Models for Exascale Hardware/Software Co-Design

Damian Dechev

Scalable Computing R&D Department

Sandia National Laboratories, Livermore, CA 94550
ddechev@sandia.gov

Amruth R Dakshinamurthy
Modern Programming Techniques Research Lab
University of Central Florida, Orlando, FL 32816

amruth.rd@knights.ucf.edu

Abstract

The utilization of large-scale parallel event simulators such
as SST/macro requires that skeleton models of underlying
software systems and architectures be created.
Implementing such models by abstracting the designs of
large-scale parallel applications requires a substantial
amount of manual effort and introduces human errors. We
outline an approach for automatic extraction of SST/macro
skeleton models from large-scale parallel applications. Our
methodology for deriving SST/macro skeleton models is
based on the use of extensible and open-source ROSE
compiler infrastructure. The SST/macro skeleton models
are then combined with appropriate models of the network
and hardware to generate wealth of information about
execution pattern such as average instruction mix, memory
access patterns and network utilization etc. for high-
performance computing architectures. This information is
useful in understanding the impact of various design
decisions concerning hardware or software and will enable
co-design practices to be applied to the design of future
exascale systems and provide an environment to prototype
ideas for future programming models and software
infrastructure for these machines.

Introduction

With the growth of high-performance computing systems,
understanding the behavior and performance of large-scale
parallel applications on those architectures has become
extremely difficult. Applications and algorithms need to
constantly keep evolving to adapt to the new high-
performance architectures to efficiently use the amount of
parallelism offered by them. The hardware/software co-
design addresses this problem through a design
methodology by allowing feedback between application
development and hardware design. Simulation tools such
as Structural Simulation Toolkit (SST) macro simulator [1]
can be extensively used that will enable hardware/software
co-design process to be applied effectively to the
development of high-performance computing platforms.
The SST/macro simulator provides a parallel simulation
environment based on MPI programming model and is
driven from either a trace file or a skeleton application [1].
Trace file generation (by collecting the resulting data after
executing the full application) requires high-end hardware
to be available even before simulation is carried out and
cannot be easily scaled to a different number of processors.
The use of a skeleton application, a simplified model of the
full application eliminates this problem since it is much
less expensive than running the full application, yet
captures the essence of the application in sufficient detail
in order to generate the application's processor and
network workload. Construction of skeleton models out of

'existing applications can be done manually, however,
manual methods are time-consuming, repetitive, and run
the risk of human error. Our motivation is to greatly
simplify the process of creating skeleton applications by
automatic extraction of skeleton models from the
applications using compiler analysis techniques to
significantly reduce both expenses in time and chances of
error.

Key Technology Components

The key components that make up the core of our
automatic translation framework as shown in Figure 1 are
presented below.

The ROSE compiler framework [4] is an open source-to-
source compiler infrastructure for building a wide variety
of customized analysis, optimization and transformation
tools. It enables rapid development of source-to-source
translators from C, C++, UPC, and Fortran codes to
facilitate deep analysis of complex application codes and
code transformations. ROSE consists of Edison Design
Group (EDG) front-ends, a midend, and backends. The
front-end is used to parse C and C++ applications, midend
for code analysis, optimizations and transformations, and
backends to generate source code.

The SST/macro discrete event simulator [1] is an open
source simulation package that enables evaluation of large-
scale parallel machines. It is implemented in C++ with a
modular design, permitting multiple computation and
communication models to be employed. The SST/macro
simulator provides several network and processor models.
The network models fully support MPI and several
interconnects including fat-tree, arbitrary dimension
meshes and tori, and gamma graph.

The Skeleton model [1] of an application is an abstract
form of the full scale application where we retain only
those portions of the code (MPI calls), which are needed to
determine the program flow. In other terms, a skeleton is a
refactored version that is constructed by removing
fragments of redundant computations and message data
whose values do not affect the application's state, but
retaining those code fragments specific to set of properties
of interest to SST/macro simulator.

! Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-
94AL85000.

lgalleg
Typewritten Text
SAND2012-1523 C

Extraction of Skeleton model

The ROSE compiler infrastructure allows programmers to
construct domain-specific deep program analysis modules
by allowing common forms of program analysis such as
dependence analysis, control flow, and call graph etc. [4]
ROSE allows for two main types of compiler extension
modules: extraction modules and translation modules.
Extraction modules perform program slicing by abstracting
the application code and modeling only the relevant
software components. This is done by identifying the
values that could affect program state and to isolate the
computations and communications that determine these
values. The translation modules specify the desired output
based on the sliced-out Abstract Syntax Tree (AST), a tree
representation of the source code flow graph where each
node denotes a construct occurring in the source code.

C++ MPI program

'::rr:::d ‘onr“é;; SST Macro Simulator
(Open64) (EDG)
ot skeleton Simulator Core
r
MPI program MPI
services _Flueeable
E Components Parallel

Sage Il

DES

SAGE Il utility Intermediate

functions Representation

L 4

ROSE Back Performance

End s
Statistics
ROSE Program | poce oo

Analysis & 100D | qoo e on *
optimizations

AST Rewrite

AST Traversal Mechanism

Figure 1: Automatic Translation Framework

We rely on a tool for matching arbitrary expression
patterns on the AST to derive a backward slice. A
backward slice is a collection of all program statements
and expressions that affect a given point in the user code.
Our slicing algorithm operates on the Program
Dependence Graph (PDG) that is derived from the AST
[4]. A PDG is a graph that models the statements as the
graph's nodes and the dependencies among the program
statements as directed edges. Formally defined, an edge
from a statement S1 to a statement S2 exists whenever
there is one or more dynamic instances in S1 that share a
dependence with a later dynamic instance of S2. A PDG
represents both data dependence edges and control
dependence edges. A data-dependence edge from S1 to S2
indicates that the actions executed in S2 depend on the
value computed in S1. A control-dependence edge from S1
to S2 models the fact that statement S2’s execution is
dependent on the outcome of the execution of statement
S1. The implementation of the translation module is
achieved by matching expression patterns against the
sliced-out AST to convert the AST annotated with input
application instances into AST with SST/macro-specific
nodes, thus creating the skeleton model. The expression
patterns (MPI calls) are those instances of the application
specific to set of properties of interest to SST/macro
simulator. We have selected the Jacobi relaxation
algorithm as a canonical example for solving a system of
linear equations using C++ [3] and MPI standard libraries
to demonstrate the usefulness and accuracy of our

automatic skeleton extraction methodology. The algorithm
being embarrassingly parallel makes it an ideal choice for
building a large-scale parallel application using MPI
library targeting distributed memory architecture
platforms. The C++ full scale program utilizing standard
MPI calls is fed to ROSE front end. The front end parses
the input source code and generates EDG’s AST, the
Edison Design Group’s compiler intermediate
representation. This AST is traversed internally to generate
a new AST called Sage III Intermediate representation.
The new SAGE III AST is the input to our translator that
applies the program transformation and AST
Rewrite/Traversal modules provided by ROSE. We apply
a pre-determined traversal mechanism to find out standard
MPI calls in the program and their dependencies. The
ROSE compiler provides different levels of AST rewrite
mechanisms for tree editing operations that can operate on
statements within the AST. Each interface has only three
functions: insert(), replace(), and remove() which are used
by different interfaces to insert new AST fragments or to
replace existing AST sub trees or to remove specific AST
nodes [4]. After traversing the entire AST and editing it by
matching expression patterns of standard MPI call
statements using String comparisons in AST nodes, we are
going to have a new rewritten AST composed of
SST/macro MPI calls. We do program slicing concurrently
by Top-Down-Bottom-Up traversing on the AST a final
time to remove all nodes which do not contain the
AstAttribute which tells us to keep the node. The backend
C++ source generator uses this rewritten, sliced-out AST
and unparses it to generate C++ source code which is our
skeleton program. The skeleton program will only provide
information about MPI calls and their associated argument
lists and the transformation abstracts away all the low-
level point-to-point messages that a particular MPI library
uses to implement an operation. By running this skeleton
program on SST/macro simulator for varying network
topology and hardware layout, one can predict the modeled
application's performance on large-scale parallel machines
in terms of execution times.

Conclusions

Our methodology uses the program analysis capabilities of
ROSE compiler to build a translator for automatically
extracting skeleton models from large-scale parallel
applications which use MPI programming model. The
simulation results would assist in the development of high-
performance computing architectures and measuring the
efficiency and scalability of applications. We plan to
further extend our automatic translation framework for
extracting skeleton models from Sandia’s Mantevo
applications [5] and develop it to include other
programming models.

References

[1] C.L.Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar,
D. A. Evensky, J. Mayo, “A Simulator for Large-Scale Parallel
Computer Architectures,” International Journal of Distributed
Systems and Technologies (IJDST), 1(2), 57-73. 2010.

[2] V. S. Adve, R. Bagrodia, E. Deelman, and R. Sakellariou,
“Compiler-optimized simulation of large-scale applications on high
performance architectures,” J. Parallel Distrib. Comput.,

(3]

(4]
(3]

62(3):393-426, 2002.

B. Stroustrup, The C++ Programming Language, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000. Comput.,
62(3):393-426, 2002.

ROSE Compiler, http://www .roseCompiler.org

Sandia’s Computational Software Site,
https://software.sandia.gov/mantevo/download .html

