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Sandia’s energy missions and core competencies
* Subject of presentation

v Hydrogen energy: Structure materials for H-storage
v/ Power source: System engineering of thermoelectric (TE) module

* Summary
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Exceptional service in the national interest”

* Largest national lab, focus more [f§z=h8
on engineering & applications ]

* Missions
— Energy and climate
— Nuclear security engineering
— Defense systems
— Homeland security
* Locations
— Albuquerque
— Livermore
— Also Nevada, Hawaii, DC
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Energy-related core competencies at Sandia

v" Fuel combustion

v' Hydrogen energy

v Power source development

Today’s discussions
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% Programmatic Goals and S&T Engagements

Develop Materials and Capabilities

l Enabling design and build

Reliable High Performance Energy Systems for
Defense or Commercial Use

Thermoelectric Module Structure for H2-Reservorr

‘/_\

Resistance
Weld

Design/construct thermoelectric module to Design and construct a reliable
mine power from low level heat source hydrogen storage reservoir

Sandia
r.h National _
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hermoelectric fundamentals and system selection

Thermal Input
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Typical TE module confiquration

S: Seebeck’s coefficient =
p: Electrical resistivity Experimentally measured
K: Thermal conductivity —

Th_Tc \/1+Z avg ~

Generator Efficiency : 1 =
W 2, +Tc/Th
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-~ Material factors associated with Bi,Te,-based TE /LMA 23
> module design/construction
Typical design/construction of Schematic of construction
Bi,Te;-based TE module e ——

Conductive Cu

Metal Solder
coating Joint

Cross

\\\\%ﬁw“% section

A

Conductive Cu

l \

Bi2Te3-based alloys Module/ Device

* p-n alloys synthesis & processing Contact-metallization design & fabrication

e Alloy metallurgy & thermal aging Material compatibility/thermal aging

* TE transport property Contact metallization’s resistance

* Mechanical behavior

Material-device interaction & structure integrity

Sandia
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¢ Bi2Te3-based TE Module

Commercial
TE modules

= . . . , 223
}."Materlal and System Engineering Challenges of Vi a4

Contact metallization design &
metallurgy impact structure integrity
and system performance

Physical metallurgy of p-n alloys
impacts ZT and in turn, power

n-type generation efficiency

Bi, (Te,Se)s |

Inadequate material design and
construction led to premature
failure of the Bi2Te3-based module

- . . . . Sandi
Mitigation and/or engineering solution? | (A o

Laboratories
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4 Test matrix for determining the ultimate contact

metallization system

TV AL =)
VA A4

Ni

lear S ity Admi

Base TE Material Diffusion Barrier Solder Aging Temperature Aging Period
p-type Bi-Te Electroless Ni Sn0.8Au0.2 100 °C One week
n-type Bi-Te Electroless Co 175 °C Three months

Electrolytic Co 240 °C Six months

Electroless Pd

Electrolytic Pd

Electroless cobalt diffusion
barrier with 80/20 Au/Sn
solder on one end

expansion

Reasons for selection:
* Compatible coefficient of thermal

e Desirable contact resistance
* Performed at room temperature

11-15-2013 NPS-NY
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Nuclear S

Stable Grain Size of p and n Alloys upon Aging Up

As received 6 month

10pm SANDIA
SEM WD 8.2mm

Sandia
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ﬁtrong Texture Seen in the p-n base Alloys due to /I VA A4
its Rhombohedra Structure

EBSP color map Sample orientation Inverse pole figure
[01-10] [01-10]
5
Rolling I Sample Normal
Transverse

[0001] [10-10] [0001] [10-10]

0001

Transverse Rolling direction

200°C/2 hrs
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3-point Bend Indicates Slight Drop in strength of n-tilé""
upon 200°C Heating

High temperature 3-point bend tester

Bending of N-type Specimens

Extrusion
0.7 - direction

Force, N

O ‘ : I I I I I I I 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Displacement, mm By Wei-Yang Lu, 08256
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Stable alloy composition with no obvious

interfacial reaction upon aging
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Minor preexisting chemical heterogeneity was also seen in both p- and n- types

i
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nisotropic mechanical behavior and TE transport dictate=
alloy processing & module fabrication/construction

Mechanical strength Fisure of Merit

Bend 1: (01-10) out-plane

09 T ] (p-type) Figure of Merit
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‘ Ni or Co with Sn-soldered is eliminated due to
metallurgical instability

T VAT =3
N A’ &4

A

Nuclear S ity

AR 100°C  175°C 250°C

l
1k

Interfacial reaction in p-tile with
Ni barrier, at 250°C/7 days.

—
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Discoloration on p-pile with Co barrier
suggested a metallurgical reaction

-

With Ni-phosphor barrier

With Co-barrier

WDS, 250C_Ni_P_Electroless_Solder

Reaction zones
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I A A 4
TEM analysis confirms interfacial instability of
metallization with Co barrier
7 days
FIB/SEM images

90 days

Te-Co reaction layer with pores

at the original Te/Cojinterface
180 days

11-15-2013 NPS-NY
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4 Based on the low solubility of Au in Bi2Te3 and no obvious

interfacial reaction, Au/Bi2Te3 is the final selection

AR 2 weeks Phase diagram shows low
solubility of Au in Bi2Te3

P type

HFW [tit [ HV [ ——1pm—
x|5.12 ym|52 | 5.00 kV

N-type

B ; Sandia
Root cause of interface voids? fl'l National
11-15-2013 NPS-NY Laboratories
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Adhesion and structure integrity of Au
metallization is process-dependent

| N
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Nuclear

By electroplating

3-D SEM image reconstruction using focus ion beam (FIB) shows thru-

thickness pinholes and film defects of PVD Au.

11-15-2013 NPS-NY
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P By process of elimination, the 15um electroplated Ati™
is selected for strong adhesion and low film defect
Process development and optimization completed for thin film Au metallization

!

200 nm 15-20 um Au by 20 um Pd, Ni, Co by electroplating
Au by PVD electroplating w/ or w/o Sn-Au-solder

15 um Au by

PVD
Au delamination

Metallization in stability Stable metallization at Metallization instability
at 240°C for 6 months 240°C for 6 months at 240°C for 6 months

Reacted with Bi2Te3-
based p- or n-type alloys

Incompleteed Au coverage led to
adverse environmental-induced
Sb or Bi oxidation & phase
transformation.

Stable contact
resistance at 240°C

B Go
B No-go

Sandia
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The final selection
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As-received
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could weaken the bond strength or structure integrity

l VAN %)
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i Nuclea

in growth/recrystallization has little effect on TE transport or

contact resistance, therefore, not important to TE Eerformance
240°C/8

Pores at the interface are more visible in the annealed tiles that potentially
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TE transport property & contact resistance
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Nuclear S
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become unstable at <350°C

TE transport properties of n-type

Contact resistance

Seebeck Thermal Conductivity
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TE transport properties changes drastically, electrical
resistivity in particular, at the accelerated aging at

350°C for a month.
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~ Materials science factors must be integrated /I VA A4

into system engineering

p-n base alloy & polymer filler Thin film metallization

Anisotropy Device construction/material compatibility

Microstructure

Process-induced defect

induced failure

TE transport Power generation efficiency
S2 Th_Tc \/1+ZTavg -1 e
T =—T|n=
PK T, \/ 1+ 72T avg T T. /Ty, e arecy
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4//, rogrammatic infrastructure for H2 Program at Sandia
‘\
* Enhancing our critical H2 science and technology capabilities
* Partnerships with industry, labs, and through our Livermore
Valley Open Campus REACH Initiative.
Hydrogen Program
Daniel Dedrick
Project Manager Business Development
Marcina Moreno Ed Noma
| [ | | [ I |
. H, Structural Renewable Storage Systems
| fety, C& : : I Cell ; 3 4 -
Vot | | dwontors | [ feier || bedwton || popfugmng || el || faneerng
/ L Solar Utility-scale Market
. . . B BrianN.IGf)t:qI:rday Thermochemi.cal ] Storage Tran:sformation
Su bJ ect Of d I SCUSSIO n Tony McDaniel Anna Lord Lennie Klebanoﬁ‘
| Testing || Storage materials
Chris San Marchi Vitalie Stavila
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% T for tritium/hydrogen reservoir is SNL's core competéhicy™

for the defense & energy security missions

Metal joining/welding

Metal Forming thru
casting /forging...

Resistance
Weld

A reservoir design based on sound science

Material science factors:

* Process-induced physical and chemical metallurgy:

- Mechanical properties, microstructure and chemical uniformity?
- Processing — structure - performance relationship?

* Environmental effect from H-isotope exposure?

Sandia
rl1 Natipgal
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}‘ Tr/Hydrogen science is critical for

engineering H-storage reservoirs

1) Hydrogen-surface interactions: molecular adsorption and dissociation
producing atomic hydrogen chemisorbed on the metal surface

2) Bulk metal-hydrogen interactions: dissolution of atomic hydrogen into the
bulk and segregation to defects in the metal (i.e., transport and trapping)

3) Hydrogen-assisted cracking: interaction of hydrogen with defects changes
local properties of the metal leading to embrittlement and possibly failure

To prevent
catastrop | ' }
Bulk interations . .
- Ho— 4 B Hydrogen-assisted failure

H fractureHH
H

Science-based understanding of embrittlement essential
for ensuring safety and reliability of hydrogen technology

Sandia
Natipgal
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} Brittle fracture is observed in the H-precharged

N A &

YN}

stainless steel specimens

Tensile tested specimens

Alloy VI

Non-charged 454 B

] .\'M#\ $e..

Tensile testing at 293 K

Tensile testing at 223 K

ASTM _
alloy  grain Yield | Reduction of area (%) | VYield Reduction of area (%)
size  strength|~ Non-  Hydrogen- | strength{Non-  Hydrogen-
(MPa) charged precharged (MPa) charged precharged
| 6 214 82 57 288 78 21
\Y; 4 221 73 40 312 75 20

11-15-2013 NPS-NY

Scientific rationale behind the embrittlement?

i

Sandia
National
Laboratbries



aceted brittle fracture observed in H-precharged //l_v‘AVDV;S

fracture surface

Non-charged ductile fracture H-precharged brittle fracture

Alloy I

Alloy VI

ﬁan_dia I
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Thermal twins are commonly seen in both MM A S-S

p stainless steels: Alloy Il (#231) and Alloy VI (#451)

Fine grained alloy |l

o
Y !

Coarse-grained alloy VI

) \ 3 .

ﬁan_dia I
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% harp cracks seen in the tensile-tested specimen located at
the planar boundaries of certain microstructure features

Cracks seen on the cross section near fractured face =2

Alloy II Alloy VI

alloy IV

atignal
11-15-2013 NPS-NY Laboratories
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it Nuclear

SEM image shows the sharp cracks situated mostly at the
planar boundaries of thermal twins

Cross section near the fracture surface

Sandia CA

EM Mag 300X 7 | Sandia
m Natignal
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p Population & size of the planar fracture feature match™

the size and density of thermal twins on the cross section

Optical 1 1rnage of the Cross section SEM 1 1mage of the fracture face

Alloy 1T

Alloy VI

Sandia
Natigpal
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Comparable twin population per unit area estimate

between the cross section and fracture face

V\/
>

11-15-2013 NPS-NY

Alloy 11 Grip section Gauge section
Optical/SEM image magnification # of twins # of facets
100x 194 178
200x 103 78
300x 52 53
500x 42 37
Alloy VI Grip section Gauge section
Optical/SEM Image magnification # of twins # of facets
100x 113 120
200x 56 61
300x 28 32
500x 21 24

optical and SEM images at several magnifications..

i

For a good statistic, the population of thermal twin is counted from both

ﬁandia I
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} Mitigation strategy and/or engineering solution for
hydrogen embrittlement?

* Control adverse metallurgical feature(s) thru alloy/microstructure
engineering, during alloy forming or post forming heat treatment.

or

* Alternative alloy selection, such as high strength aluminum alloy
which is know to be less susceptible to hydrogen embrittlement

Sandia
m Natigpal
Laboratories
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Great success in developing alternative to stainless*"

steel, e.g. 2219 aluminum alloy and its welding process.

" @y

;,

GTA weld

Al-welding is one of the technical
challenge to be overcome.

Sandia
Natiggal
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'
4 2 2" phase formation & strength variation near the Al-
weld interface is vulnerable to a premature cracking.

Mitigation strategy?

0 KV EM Mag 100X

Sandia
Natipgal
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Lowering the 2" phase volume fractionis  /AMAAMTY

achieved thru post-weld annealing

S '; "A PN a
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4 Technical accomplishments in energy system engineering

Develop materials and Capabilities

l Enabling design and build

Reliable High performance energy systems for
defense or commercial use

Thermoelectric module H2-reservior structure

.

Resistance
Weld

A good success in developing a Al-reservoir

for H-embrittlement mitigation

Successful in developing a TE module that
meets the power requirement

Sandia
rl1 National _
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*te.grate basic science, engineering science and system engineering

is our strategy for achieving engineering objectives

Provide scientific rationale and
guidance for:

Basic science and mechanisms

|

Engineering science to * Alloy engineering & process optimization

o JoJolgelely T o Iy [T O Y4 R W Predictive model development for validating
construction system reliability and performance

I

Ensure the ultimate engineering
system is design/build based on
sound science

Sandia
A | Ntisoa
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