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Research Challenge 5:
Igal Brener

PI Enhanced Spontaneous Emission

Develop Photonic Approaches for Ultra-high Efficiency Solid State
Lighting
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*Participants in other Research Challenges

Work at Sandia National Laboratories was supported by Sandia’s Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of
Energy, Office of Basic Energy Sciences. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
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Motivation

State of the art white light emitter

SSL is only 20% efficient * Spontaneous emission can be enhanced
N through modification of the environment
85% , .
Spoctral (photonic density of states)
Ffficiency e Absorption can be enhanced by cavity
S 0 s effects or field concentration

a2

e Opportunities for efficiency improvements:
e At the device level
e At the phosphor/down-converter level
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Radiative Rate and its Enhancement

> Radiative rate I', of an emitter is given by the Fermi Golden rule

T o C‘)IU ,O (r, ) w is the dipole moment; p, (r,®) is local
r ch L photonic density of states (PDOS)
0
» Thus, radiative rate of the emitter can be enhanced by modifying local
Photonic Density of States

» Enhancement of Photonic Density of States in a electromagnetic cavity was
proposed by Purcell in 1946 (Q-cavity quality factor, V_ -mode volume)

3
|:IO — 32 Q ]; Structures based on photonic
47" Vi, Ny crystals, plasmonics or
metamaterials can be utilized to
achieve this.
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Outline

I. Highlights of Work

A. Photonic Crystal Control of Photonic Density of States and

Spontaneous Emission (2D & 3D) *
B. Control of Field Enhancement and Spontaneous Emission Using

Plasmonic Approaches

*Poster Presentation: W. Luk

ll. Future Work

A. 2D Photonic Crystals using Nanowire Arrays*

B. Plasmonic approaches for efficient electrically injected red
LEDs

C. Nanoantennas and Nanowires

*Poster Presentation: J. Wright
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Highlight: 2D Photonic Crystal for Spontaneous
Emission Enhancement

Motivation: Understand spontaneous emission enhancement for QD
emitters in the weak coupling regime and with many body effects

* More realistic scenario: emitter linewidths broader than cavity linewidth
(How high cavity Q is needed for maximum Sp. Emission enhancement?)

* This is relevant to enhancement of emission in QD down converters.

 We choose 2D Photonic Crystals (Silicon) and Near IR QDs as a good model
system: ease of fabrication

L3 defect cavity

(3 missing holes) Photonic crystal

Pl: Luk (This is a 3D cavity)
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Anomalous Enhancement Observed from Close-

Packed Quantum Dots
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Results:

1. Both low and high Q cavities display an enhancement 5-6x larger than what it
should be (dielectric, Purcell, angular redistribution, etc).

2. Speculation: spectral diffusion and/or Forster process could play a role not
accounted for in Fermi’s golden rule.

3. Conclusion: high density of emitters relaxes requirement for high Q cavity

Pl: Luk JOSA B 28, 1365, (2011).
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Highlight:
Silicon Logplle 3D Photonic Crystals for the Visible
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e Silicon’s large refractive index ( n~3.4) provides strong
photonic confinement ( large bandgap, enhanced PDOS)

* Its near infrared absorption ( ~ 1100nm) edge has been
a discouragement for use in visible 3DPC.

 This work demonstrates that 3D PhCs composed of Si
can operate for wavelengths shorter than its absorption
edge and with minimal loss E E E E

Cross-section View

Advanced Materials 22, 4180 (2010)

Pl: Subramania
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Highlight:
GaN Logpile 3D Photonic Crystals for the Visible

Crystalline & EpltaX|aI
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1. SilSIO, logpile PG 2. After Si is removed 3. MOCVD GaN growth
through SiO, template )

. Sapphire
B GaN
M si

Si0,
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5. GaN logpile PC after Si0, 4. After complete GaN infiltration
logpile template removal into Si0, logpile template

Normal Incidence Optical Response
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Nano Letters 11, 4591 (2011). This could be used to control light emission of
- Pl: Subramania nitride LEDs
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Plasmonic Approaches for Enhanced Emission

Emitters coupled to Plasmons have been studied and used for decades
as a viable way to enhance radiative rate. For ex: dye molecules on top
of metallic surfaces, etc.

Optical excitation Radiative mode

@

ex

— Control of Emission:
' Purcell effect, PDOS

Control of Absorption:
Optical Field Enhancement
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Highlight: Enhancement of Emitters using
Plasmonic Core-Shell Nanoparticles

An emitter encapsulated in a dielectric/metallic core/shell nanoparticle

:ig Advantages of this structure
* Insensitive to emitter placement
e Circumvent the need for spacer
i layer
e Emitter protected from

environment

600 Results:
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JOSA B 27, 1561 (2010)

A possible application could be enhancement of
absorption cross section for Phosphor Rare Earth
ions (i.e. Eu)
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Highlight:
Strong Coupling between QDs and Plasmons

» Investigated coupling between plasmonic geometries
and electrically pumped epitaxial quantum dots.

» Observed strong coupling effects in splitting of
electoluminescence from devices which was described
by plasmon field driving Rabi oscillations in quantum
dots.

» Strong coupling effects were observable despite large

inhomogeneous broadening of material system. Nano Lett. 11, 338 (2011)
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Summary: Selected Research Highlights

e Surprising emission enhancement when high density of broad-
luminescence QDs are coupled to 2D Photonic Crystals: relaxation
of high Q cavity requirement

e First demonstration of 3D logpile Si & GaN Photonic Crystals
working in the visible

e Core shell plasmonic nanoparticles provide a new platform for
bright emitters

e Demonstrated strong coupling between electrically injected QDs
and plasmonic resonances
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Publications and Presentations

e Publications (published, accepted or submitted): 9

e Selected:
— “Gallium Nitride Based Logpile Photonic Crystals”, Nano Lett. 11, 4591(2011).

— “Observation of Rabi Splitting from Surface Plasmon Coupled Conduction State Transitions in
Electrically Excited InAs Quantum Dots”, Nano Lett. 11, 338 (2011).

— “Nanocomposite Plasmonic Fluorescence Emitters With Core/Shell Configurations, J. Opt. Soc.
Am. B, 27, 1561 (2010).

— “Energy transfer from an electron-hole plasma layer to a quantum well in semiconductor
structures”, Phys. Rev. B 81, 115303 (2010).

— “Strong Coupling between Nanoscale Metamaterials and Phonons”, Nano Lett. 11, 2104 (2011

— “Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity”, J.
Opt. Soc. Am. B 28, 1365 (2011).

¢ Invited Presentations: 23
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Future Work:
Nanowire Arrays 2D Photonic Crystals

Schematic Top down NWs are excellent emitters. Use 2D Photonic Crystals to

suppress in-plane emission and thus enhance vertical emission
Band Structure (infinite rod array)
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= Time resolved PL to determine
radiative rate enhancement by PhC.
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= Optimize PhC design with simulations
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Frequency (wa/2:

MQWs 5z M, (52 I Fabrication of large area devices (1” x
| | e | 1”) using interference lithography
Recent Results Joannopoulos (1995). = Explore electrical contacting scheme

= Explore radial MQW architecture to
increase emitter volume.
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Future Work: 2D Photonic Crystal NW Lasers

e This is another approach for low threshold NW lasers
* Will attempt electrical injection

* Will map the photonic bandgap dispersion through angular PL dependence
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Future work: 2D Photonic Crystals + QDs

Confirmation of enhanced radiative rate through lifetime
measurements in the regime: Q,itter<Qeavity (Qemitter related to PL
linewidth)

e High density emitters: lifetime

* Low density emitters (single QD): correlation measurements

* Repeat all this for red emitters (relevant to SSL) Cavity resonance
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Future Work: Plasmonics for Red
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» Use plasmonics to enhance spontaneous emission rates, but implement in a high
efficiency design with reduced heating.

»Basic LED concept is InGaP active region with metal-insulator-metal plasmonic geometry.
Plasmon out-coupling structures are implemented in top and bottom metal layers.

» Any reasonable device will need to be hybrid: integrate LED texturing concepts, as well as
plasmonics, in order to achieve good output coupling and avoid waveguiding effects.
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2D —instructive, but misleading 3D large area — much more realistic
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Future Work: NWs and Plasmonic Nanoantennas

 The nanoantenna can
be designed to resonate
at absorption or
emission wavelength

e Currently exploring a
liftoff process and short-
wavelength plasmonic
metals (Ag & Al)

Aluminum nanoantennas
(disks) scatt. spectrum

Or NW encased in a metal shell

nonnmn
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Qiming Li

Jeremy Wright
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Summary: Selected Future Directions

e Exploit 2D Photonic Crystals made from NW arrays as a new
platform for high efficiency emission and lasing: synergistic with
Challenges 1 & 6

e Elucidate the mechanism for emission enhancement for QDs
coupled to 2D-Photonic Crystals when Q. itier<Qavity

e Design and fabricate electrically pumped LEDs that use
plasmonics for out-coupling and plasmonic Purcell enhancement

e Combine plasmonic nanoantennas and top down nanowires for
lower threshold nanowire lasers
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