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Development of a Polyurethane Foam
Processing Model

Problem Description:

« Many electronics are encapsulated with polyurethane foams

« Larger structural support parts are also made from polyurethane foam

« Foam materials critical for structural support and shock/vibration isolation
« Foaming can be unpredictable leading to unacceptable voids

* Inhomogeneities in foam material can lead to property variations & potential
structural issues

Goal: Develop better process models and processes
« Use to help design mold geometry, vents, gates, etc.
« Predict flow of reacting, multiphase, complex material
« Capture foaming and curing rates

« Calculate extent of fill during processing, location of knit lines, possible void
locations

* Predict maximum temperatures from exothermic reactions
Focus of this talk:

Experiments to populate parameters of this model and enable validation of
results



Polyurethane Resin Cure and Foaming Reactions

Two key reactions: Isocyanate reaction with polyols and water

H O
] Urethane formation,

R;—N=C=0 + HO—R; —> R;—N-C-0O-R, crosslinking

H O . . .
|| Foaming reaction yields

R;—N=C=0 + H20 —> R;—N-C-OH —> CO, * R;—NH, CO,andamine

Various follow up reactions: Isocyanate reaction with amine, urea and urethane

H O H
o Urea formation
Rl_N:C:O + Rl_NHZ — Rl_N_C_N_Rl

Tt g ey
Ri—N-C—N-R; + R;—N=C=0 —» R;—N-C—N—C—-N-R, Biuretformation

H O HO RO

| .
R,—N-C-0-R, + R;—N=C=0 » R,—N-C—N—C-0O-R, Allophanate formation



Improved Kinetic Model will include CO2 Generation

_AE,/RT

rate, =k [isocyanate]*[ polyol ]’ Polymerization

rate, = k,e*'""[isocyanate]’[H,O]" €O, generation
* Must track five species: water, polyol, polymer, carbon dioxide, and

isocyanate , since we have competing primary reaction
*Use experiments to determine Arrhenius rate coefficients

*Must provide initial conditions for all species
= +rate, *Integrate rate equations as part of the simulation
*Density predicted from gas generation

DICO,]

DIH:0] —rate
2

Dlisocyanate] _ .0 ate
= A 2

Ot payol #(t) = e e e
ot = —rate1 nco2 / MWCOZPCOZ + r-]quuid /MWquuidpliquid
D[ polymer] _ +rate, Proam = (:Oc:o2 ~ Pliquid )o(t) + Piiquid

Dt



Extent of Reaction for Polymerization

* Use IR to monitor polyol-isocyanate urethane reactions in both wet and dry polyurethane
* Peak height as a function of time for the 1218 cm™! peak
* |sothermal tests were carried out for various temperatures ranging from 30°C to 90°C.
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* Normalize the peak height by the maximum height at the highest temperature to obtain extent of
reaction

* Shifted extent of reaction for isothermal tests carried out for various temperatures

* Natural log of the shift factor versus the reciprocal temperature in Kelvin, gives the activation energy
for the Arrhenius rate constant for the polymerization reaction.



Extent of Reaction for Polymerization

eNumerically differentiate the extent of reaction, p, to obtain the rate

oFit the rate and the extent of reaction simultaneously to a standard equation form, where
only the exponent is unknown

eForm of between 2"9 and 3" order reaction fits data

d 2.75 k,=2.96 x 108 1/hr,
gcure — k eAE/RT (1_5 ) 0 N /
dt 0 cure AE/R=-5731.8 K

*“Wet” vs. “dry” slightly different rates — used full PMDI-4 (wet) formulation results

< dp/dt data at 30C + data 30C

= analytical 30C
= analytical 30C

+ data 50C
+ dp/dt data at 50C i
== analytical 50C

== analytical 50C ¢ data 70C

+ dp/dt data at 70C = analytical 70C

p (extent)

From polyol-
isocyanate urethane
reactions (Peak
1218 in PMDI-4
foaming)

dp/dt (L/hr)
o = N w £~y o [} ~ o] 0

= analytical at 70C

0 02 04 06 08 1 12 14 16 18 2 time (hrs)

time (hrs)

 The lumped heat of reaction was measured through differential scanning calorimetry to
be 240.3 J/g for the wet (foaming) formulation



Resin Continuous Phase Viscosity

PMDI-4 Foam (dried) DMA Viscosity Tests

comparing rates of reaction from three temperatures

e Storage and loss modulus for dry
polyurethane at 30°C, 50°C, and 70°C
measure in oscillatory rheometer

* The cross over point of G’ and G”
gives the gel point and gel time of the
polymer (0.46).

* Viscosity is correlated to extent of
reaction and compared to data
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Measure Height Change to Determine CO,

* Data have most uncertainty at early times because reaction oo et
. . . -y - . ertical Foam | 1 | - - cover I
is occurring during mixing and injections, but bubbles are 1 "™ 11 |

. : 257ox0s | 4T === s T |
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Complex Kinetics of Foaming Reaction

e CO, generating foaming reaction due to water-isocyanate has activation energy AE ~41kJ/mol
e Curing reactions due to polyol-isocyanate urethane reactions in dried PMDI-4 has roughly the same

~41kJ/mol

- The isolated foaming reaction is relatively slow

- The isolated curing reactions have slightly different rates than in presence of H,0

- In the presence of polyol (as in the PMDI-4 foam system) we observe much faster foaming
action and a different AE (29kJ/mol).

- Not perfectly isothermal due to internal heat of reaction and auto-catalysis?

foam rise exothermic polyol cure together
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Recipe of PMDI-x

Maximum amount of CO, that can form is determined from the mass injected and the
mass fraction of H,O in the recipe.

PMDI type Mass fraction H20
PMDI-4 0.00852
PMDI-6 0.00606
PMDI-10 0.00395

But the foam actual final density is higher than the theoretical because of polymerization
effectively stopping bubble expansion, bubble breakage from shear, or unreacted
material, and the actual final density depends on the temperature during the reactions.
Let maximum extent of CO2 generation a be an empirically fit a(T)
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Michaelis-Menten Reaction Form for CO,

kK(1- a)” Best fits to data gives:
dor/ Oty _ s .
- % ynim m=a4
(04

mex A =0.07419

= A exp(_E, /RT) ~E,/R=-1278.6

_ 9
M = A exp(-E, /RT) A, =4.959x10
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Predictions Compare Well to Data

PMDI-4
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Validation Experiments in Complex Geometries
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Density Gradients Occur in Polyurethane
Foams

X-ray CT of PMDI-4 part shows density gradients




Complex Large Mold for Validation

Mold has aspects (windows, gap sizes) that are relative to generic support parts
Temperature instrumented with four camera views
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Filling Method Creates Knit Lines

Foaming material is
originally placed in top
rectangular and
cylindrical reservoirs
and in bottom rim
reservoir, to simulate
legacy KC filling method




Conclusions

Advanced kinetic model almost complete

— Rekha Rao will discuss implementation into a FE computational
framework

Polymerization kinetics obtained through IR for several types of
PMDI in isothermal tests with and without H,O to produce the
foaming reaction

— Data fit condensation chemistry model

Gas evolution was measured by measuring foam volume evolution
for several types of PMDI, at several nominal temperatures

— Data fit Michaelis-Menten kinetic model

Validation data have been collected in complex molds including a
simplified, large, structural part

— Front tracking (volume evolution with time)
— Temperature at several location with time
— Density gradients in final parts





