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Development of a Polyurethane Foam 
Processing Model 

Problem Description: 

• Many electronics are encapsulated with polyurethane foams  

• Larger structural support parts are also made from polyurethane foam 

• Foam materials critical for structural support and shock/vibration isolation 

• Foaming can be unpredictable leading to unacceptable voids 

• Inhomogeneities in foam material can lead to property variations & potential 
structural issues 

Goal: Develop better process models and processes 

• Use to help design mold geometry, vents, gates, etc. 

• Predict flow of reacting, multiphase, complex material 

• Capture foaming and curing rates  

• Calculate extent of fill during processing, location of knit lines, possible void 
locations 

• Predict maximum temperatures from exothermic reactions 

Focus of this talk:  

Experiments to populate parameters of this model and enable validation of 
results 

 



Polyurethane Resin Cure and Foaming Reactions 

Foaming reaction yields 
CO2 and amine  

Two key reactions: Isocyanate reaction with polyols and water 
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Improved Kinetic Model will include CO2 Generation 
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•Must track five species: water, polyol, polymer, carbon dioxide, and 
isocyanate , since we have competing primary reaction 
•Use experiments to determine Arrhenius rate coefficients 
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•Must provide initial conditions for all species 
•Integrate rate equations as part of the simulation 
•Density predicted from gas generation 
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Extent of Reaction for Polymerization  
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• Use IR to monitor polyol-isocyanate urethane reactions in both wet and dry polyurethane 
• Peak height as a function of time for the 1218 cm-1 peak 
• Isothermal tests were carried out for various temperatures ranging from 30°C to 90°C.  
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• Normalize the peak height by the maximum height at the highest temperature to obtain extent of 
reaction 
• Shifted extent of reaction for isothermal tests carried out for various temperatures  
• Natural log of the shift factor versus the reciprocal temperature in Kelvin, gives the activation energy 

for the Arrhenius rate constant for the polymerization reaction.  
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•Numerically differentiate the extent of reaction, p, to obtain the rate 
•Fit the rate and the extent of reaction simultaneously to a standard equation form, where 

only the exponent is unknown 
•Form of between 2nd and 3rd order reaction fits data 

 
 
 

•“Wet” vs. “dry” slightly different rates – used full PMDI-4 (wet) formulation results 
 
 
 
 
 
 
 
 
 
 
• The lumped heat of reaction was measured through differential scanning calorimetry to 

be 240.3 J/g for the wet (foaming) formulation 
 
 
 

Extent of Reaction for Polymerization  
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Resin Continuous Phase Viscosity  
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PMDI-4 Foam (dried) DMA Viscosity Tests
comparing rates of reaction from three temperatures

G'- 30C
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data does not include initial ~3 

minutes of reaction at room 

temperature prior to taking data

• Storage and loss modulus for dry 
polyurethane at 30oC, 50oC, and 70oC 
measure in oscillatory rheometer  
• The cross over point of G’ and G’’ 

gives the gel point and gel time of the 
polymer (0.46). 
•Viscosity is correlated to extent of 

reaction and compared to data 

Measurements by Doug Adolf 



Measure Height Change to Determine CO2 
Concentration 

• Data have most uncertainty at early times because reaction 
is occurring during mixing and injections, but bubbles are 
being destroyed in these processes, too. 

• We can only measure height change after these processes.  
• CO2 loss from bubble breakage at top surface? BUT bottom 

line: engineering model to predict volume change 
• The foam cannot be preheated, so during the foam rise the 

temperature is not steady. 
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gives activation energy 
∆E with and without 
curing 
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Complex Kinetics of Foaming Reaction 
• CO2 generating foaming reaction due to water-isocyanate has activation energy ∆E ~41kJ/mol 
• Curing reactions due to polyol-isocyanate urethane reactions in dried PMDI-4 has roughly the same 

∆E ~41kJ/mol 
- The isolated foaming reaction is relatively slow 
- The isolated curing reactions have slightly different rates than in presence of H20  
- In the presence of polyol (as in the PMDI-4 foam system) we observe much faster foaming 

action and a different ∆E  (29kJ/mol).  
- Not perfectly isothermal due to internal heat of reaction and auto-catalysis? 
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Competing reactions should slow reaction, but actually 
speeds up  foaming while curing is unaffected  



Recipe of PMDI-x 
Maximum amount of CO2 that can form is determined from the mass injected and the 
mass fraction of H2O in the recipe. 
 
PMDI type Mass fraction H2O 
PMDI-4  0.00852 
PMDI-6  0.00606 
PMDI-10  0.00395 
 
But the foam actual final density is higher than the theoretical because of polymerization 
effectively stopping bubble expansion, bubble breakage from shear, or unreacted 
material, and the actual final density depends on the temperature during the reactions. 
Let maximum extent of CO2 generation α be an empirically fit α(T) 

Measured “free rise” density at 70°C 0472.10048.0max  T



Michaelis-Menten Reaction Form for CO2 

M

k

dt

d

m

n







)1(

)1(
/

max

maxmax










 

 

Best fits to data gives: 
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Predictions Compare Well to Data 
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Validation Experiments in Complex Geometries 
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• Video follows advancing front in geometry developed by KC for quality control 

• Temperature instrumentation added 

 



Density Gradients Occur in Polyurethane 
Foams 

• X-ray CT of PMDI-4 part shows density gradients 



Complex Large Mold for Validation 

• Mold has aspects (windows, gap sizes) that are relative to generic support parts 

• Temperature instrumented with four camera views 

 

Simplified Part 



Filling Method Creates Knit Lines 

Foaming material  is 
originally placed in top 
rectangular and 
cylindrical reservoirs 
and in bottom rim 
reservoir, to simulate 
legacy KC filling method 



Conclusions 
• Advanced kinetic model almost complete 

– Rekha Rao will discuss implementation into a FE computational 
framework  

• Polymerization kinetics obtained through IR for several types of 
PMDI in isothermal tests with and without H2O to produce the 
foaming reaction 
– Data fit condensation chemistry model 

• Gas evolution was measured by measuring foam volume evolution 
for several types of PMDI, at several nominal temperatures 
– Data fit Michaelis-Menten kinetic model 

• Validation data have been collected in complex molds including a 
simplified, large, structural part 
– Front tracking (volume evolution with time) 
– Temperature at several location with time 
– Density gradients in final parts 

 




