

Methods for Power System Expansion Planning Considering Reliability Criteria

Richard Li-Yang Chen
Sandia National Laboratories

UC Davis Energy Institute
January 3, 2011

Outline

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

1 Overview

2 Wind Farm Network Design (WFND)

3 $N-k$ Survivable Grid Design

4 Conclusion

Outline

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Power Grid R&D at Sandia (Operations, Management, and Evolution)
- Long-Term Grid Planning
- Transmission and Generation Expansion Problem (TGEП)
- Reliability Metrics

Grid Operations, Management and Evolution R&D at Sandia

Reliable Grid Planning

R. Chen

Overview

Wind Farm Network Design (WFND)

$N-k$ Survivable Grid Design

Conclusion

- Long-Term Planning Under Uncertainty
 - Wind Farm Network Design
 - $N-k$ Survivable Grid Design
- Advanced Predictive Models for Renewables Output
- Unit Commitment and Day-Ahead Scheduling

Power Grid Operations, Management and Evolution

- Electric power systems are extremely complex
 - sheer physical size
 - widely dispersed geographically
 - nation and international interconnections
 - flows follow physical laws not desired transportation routes
 - cannot be efficiently/effectively stored in large quantities
 - interdependence across large distances
- Primary emphasis on providing a reliable supply of electricity to customers
- Spare or redundant capacities (generation and transmission) inbuilt to ensure adequate and acceptable continuity of supply in the event of disruptions (scheduled or unscheduled)
- How much redundancy and at what cost?

Long-Term Power Grid Planning

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Long-term grid planning centers on two mathematical optimization models for cost minimization:
 - generation capacity expansion
 - transmission capacity expansion
- Generation expansion addresses the question of where and when to place new generation facilities (plants) and in what quantity
- Transmission expansion addresses the analogous question for high-voltage transmission corridors and lines, typically in the context of a transportation model or DC approximation of power flow.

Power Flow Overview

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N\text{-}k$ Survivable
Grid Design

Conclusion

- Alternating Current (AC) Line Flow Equations:

$$P_k = V_m^2 G_k - V_m V_n (G_k \cos(\theta_m - \theta_n) + B_k \sin(\theta_m - \theta_n)), \forall k$$

$$Q_k = -V_m V_n (G_k \sin(\theta_m - \theta_n) - B_k \cos(\theta_m - \theta_n)) - B_k V_m^2, \forall k$$

- Non-convex constraints

- In practice, approximations of AC flow equations are used:

- Linearized Direct Current (DC) Flow Equations:

$$B_k(\theta_n - \theta_m) - P_k = 0$$

- Transportation (network flow) model

Nominal Transmission and Generation Expansion Problem

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

Minimize:

- Total Capacity (Generation and Transmission) Expansion Cost and
- Operation Cost

Subject to:

- Generation operating constraints
- Node balance constraints
- Line flow constraints

$$B_k(\theta_n - \theta_m) - P_k = 0$$

- Line capacity constraints

Reliability Metrics in Widespread Use

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Reserve Margins
 - Difference between available capacity and peak demand, normalized by peak demand
- Loss of Load Cost (LOLC)
 - Objective penalty (\$/MW) for load shedding
- Loss of Load Expectation (LOLE)
 - Constraint on the amount of load shed (MWh) in expectation
- Loss of Load Probability (LOLP)
 - Demand must be satisfied with some probability $\alpha \in (0, 1)$
- $N-k$ security requirement
 - Grid must be able to survive outage of up to k network elements (transmission line, transformer, generator) – while satisfying demand

Reliability Metrics in Widespread Use

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

■ Reserve Margins

- Difference between available capacity and peak demand, normalized by peak demand

■ Loss of Load Cost (LOLC)

- Objective penalty (\$/MW) for load shedding

■ Loss of Load Expectation (LOLE)

- Constraint on the amount of load shed (MWh) in expectation

■ Loss of Load Probability (LOLP)

- Demand must be satisfied with some probability $\alpha \in (0, 1)$

■ $N-k$ security requirement

- Grid must be able to survive outage of up to k network elements (transmission line, transformer, generator) – while satisfying demand

Reliability Metrics in Widespread Use

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

■ Reserve Margins

- Difference between available capacity and peak demand, normalized by peak demand

■ Loss of Load Cost (LOLC)

- Objective penalty (\$/MW) for load shedding

■ Loss of Load Expectation (LOLE)

- Constraint on the amount of load shed (MWh) in expectation

■ Loss of Load Probability (LOLP)

- Demand must be satisfied with some probability $\alpha \in (0, 1)$

■ $N-k$ security requirement

- Grid must be able to survive outage of up to k network elements (transmission line, transformer, generator) – while satisfying demand

Reliability Metrics in Widespread Use

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Reserve Margins
 - Difference between available capacity and peak demand, normalized by peak demand
- Loss of Load Cost (LOLC)
 - Objective penalty (\$/MW) for load shedding
- Loss of Load Expectation (LOLE)
 - Constraint on the amount of load shed (MWh) in expectation
- Loss of Load Probability (LOLP)
 - Demand must be satisfied with some probability $\alpha \in (0, 1)$
- $N-k$ security requirement
 - Grid must be able to survive outage of up to k network elements (transmission line, transformer, generator) – while satisfying demand

Reliability Metrics in Widespread Use

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Reserve Margins
 - Difference between available capacity and peak demand, normalized by peak demand
- Loss of Load Cost (LOLC)
 - Objective penalty (\$/MW) for load shedding
- Loss of Load Expectation (LOLE)
 - Constraint on the amount of load shed (MWh) in expectation
- Loss of Load Probability (LOLP)
 - Demand must be satisfied with some probability $\alpha \in (0, 1)$
- $N-k$ security requirement
 - Grid must be able to survive outage of up to k network elements (transmission line, transformer, generator) – while satisfying demand

Reliability Metrics in Widespread Use

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

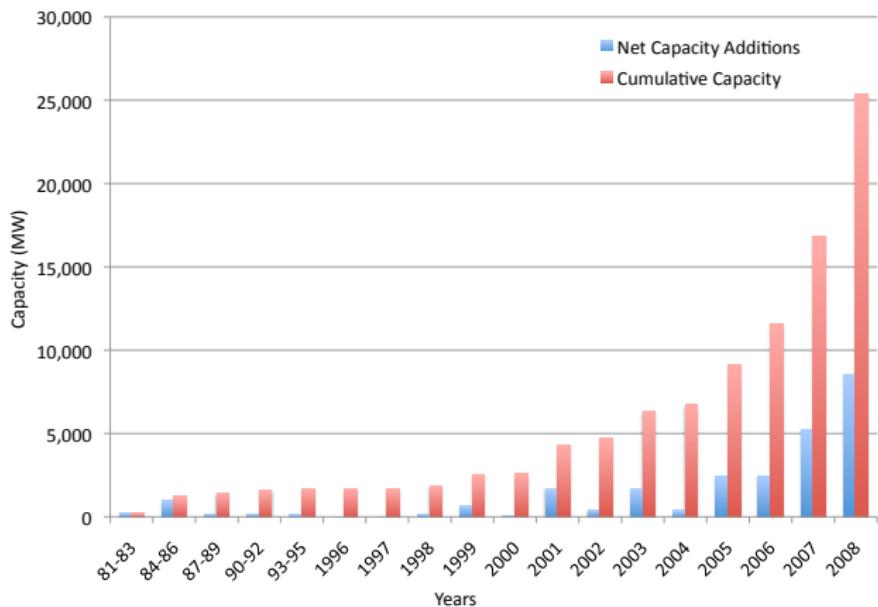
- Reserve Margins
 - Difference between available capacity and peak demand, normalized by peak demand
- Loss of Load Cost (LOLC)
 - Objective penalty (\$/MW) for load shedding
- Loss of Load Expectation (LOLE)
 - Constraint on the amount of load shed (MWh) in expectation
- Loss of Load Probability (LOLP)
 - Demand must be satisfied with some probability $\alpha \in (0, 1)$
- $N-k$ security requirement
 - Grid must be able to survive outage of up to k network elements (transmission line, transformer, generator) – while satisfying demand

Section 2: Wind Farm Network Design (WFND)

Reliable Grid
Planning

R. Chen

Overview


Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design
Conclusion

- Overview
- WFND Formulation
- Solution Approaches
- Computational Results
- Ongoing Efforts

Motivation (1 of 2)

- Wind is the fastest growing source of electricity in U.S. (AWEA 2008)

Motivation (2 of 2)

- Much of the growth in renewable energy is a direct result of climate change concerns and increasing government support:
 - More than half the states passed **Renewable Portfolio Standards**
 - TX: 5,880MW (1%) by 2015, 10,000NW (2%) by 2025
 - CA: 30% by 2030
 - MI: 10% by 2015
 - American Recovery and Reinvestment Act of 2009
 - **Production Tax Credit**
 - **Investment Tax Credit**
- Wind is almost always the most cost-competitive renewable electricity source

Challenges

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Power system design models must now include wind-based generation
- Current models permit multiple types of generation (coal, natural gas, nuclear)
- Why can't we treat wind the same?
- Several important differences

1. Spatial Variability of Wind Speed

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

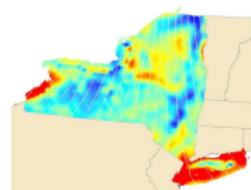
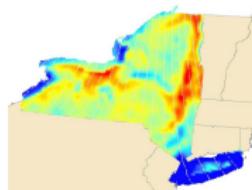
- Wind speed varies over space
- Two coal generators at location A have the same capacity output and variability as two equivalent generators at location B
- Not true with wind!
- Can't separate capacity decisions from location decisions (integrated approach)

2. Temporal Variability

Reliable Grid
Planning

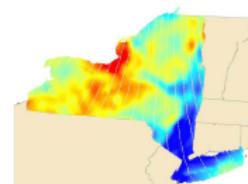
R. Chen

Overview



Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion


- At any given site, wind speed is also stochastic over time
- Because wind power can't be efficiently stored, fluctuations are a real challenge

Deviations from Mean by Time of Day

Red: 1.4 x mean

Blue: 0.6 x mean

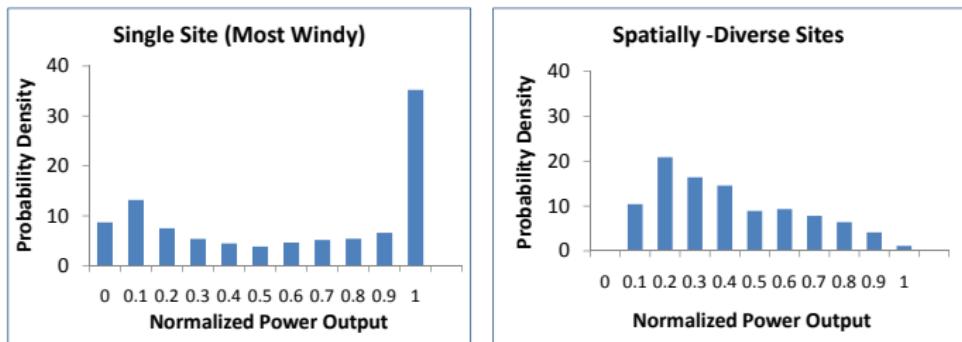
3. Co-Locating Production and Demand

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)


$N-k$ Survivable
Grid Design

Conclusion

- Conventional generators often located fairly close to load center (demand points)
 - Leads to reduced transmission costs
- Can't necessarily do this with wind
 - Best wind resources not necessarily near population centers
 - Transmission loss

4. Trade-off Between Transmission and Reliability

- More diverse network can mean greater reliability but higher transmission costs

Problem Overview

- How to design a network of wind farms to supply electricity across a large area, considering both system reliability and cost?
- All the challenges of designing traditional generation and transmission networks
- Additional challenges of spatial and temporal correlations of wind
- Current system planning studies focus on site-level optimization
 - selects sites based on average wind speed
 - neglects effect of spatio-temporal correlation across wind sites

Problem Statement (WFND)

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- WFND is a two-stage stochastic program where **first-stage decisions** correspond to network design and **second-stage decisions** correspond to operating cost (OC) and loss-of-load-cost (LOLC)

$$\underbrace{\sum_{i \in \mathcal{N}} h_i z_i}_{\text{Gen. siting}} + \underbrace{\sum_{i \in \mathcal{N}} \sum_{g \in \mathcal{G}} c_i^g x_i^g}_{\text{Gen. capacity}} + \underbrace{\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}: i < j} h_{ij} z_{ij}}_{\text{Trans. siting}} + \underbrace{\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}: i < j} \sum_{t \in \mathcal{T}} c_{ij}^t x_{ij}^t}_{\text{Trans. capacity}} + \underbrace{\sigma \mathbb{E}_{\omega} [Q_{\mathbf{x}\omega}]}_{\text{Operating Cost \& LOLC}}$$

s.t.

fixed charges $\left\{ \begin{array}{l} x_i^g \leq M_i^g z_i, \quad \forall g \in \mathcal{G}, i \in \mathcal{N} \\ x_{ij}^t \leq M_{ij}^t z_{ij}, \quad \forall t \in \mathcal{T}, i, j \in \mathcal{N}, i < j \end{array} \right.$

renewable portfolio standards $\left\{ \begin{array}{l} \sum_{i \in \mathcal{N}} \rho_i x_i^0 \geq \Delta_{RPS} \end{array} \right.$

variable integrality $\left\{ \begin{array}{l} x_i^g \in \mathbb{Z}^+, \quad \forall g \in \mathcal{G}, i \in \mathcal{N} \\ x_{ij}^t \in \mathbb{Z}^+, \quad \forall t \in \mathcal{T}, i, j \in \mathcal{N}, i < j \\ z_i \in \{0, 1\}, \quad \forall i \in \mathcal{N} \\ z_{ij} \in \{0, 1\}, \quad \forall i, j \in \mathcal{N}, i < j \end{array} \right.$

Recourse Function

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

$$Q_{\mathbf{x}\omega} = \min \underbrace{\sum_{i \in \mathcal{N}} \sum_{g \in \mathcal{G}} n_i^g p_i^g}_{\text{Operating Cost}} + \underbrace{\sum_{i \in \mathcal{N}} l_i s_i}_{\text{LOLC}}$$

s.t.

production
+ flow in – flow out
= demand – lost load

$$\left\{ \sum_{g \in \mathcal{G}} p_i^g + \sum_{j \in \mathcal{N}} \sum_{t \in \mathcal{T}} [\mathcal{L}(f_{ji}^t) - f_{ij}^t] = d_i(\omega) - s_i, \quad \forall i \in \mathcal{N} \right.$$

transmission line
capacity limits

$$\left\{ f_{ij}^t \leq \kappa^t \cdot (e_{ij}^{t\omega} + x_{ij}^t), \quad \forall t \in \mathcal{T}, i, j \in \mathcal{N} \right.$$

generation
capacity limits

$$\left\{ p_i^g \leq \kappa_i^{g\omega} \cdot (e_i^{g\omega} + x_i^g), \quad \forall g \in \mathcal{G}, i \in \mathcal{N} \right.$$

variable nonnegativity

$$\left\{ \begin{array}{l} f_{ij}^t \geq 0, \quad \forall t \in \mathcal{T}, i, j \in \mathcal{N} \\ s_i \geq 0, \quad \forall i \in \mathcal{N} \\ p_i^g \geq 0, \quad \forall g \in \mathcal{G}, i \in \mathcal{N} \end{array} \right.$$

Stochastic Mixed-Integer Programming: The Algorithm Landscape

Reliable Grid Planning

R. Chen

Overview

Wind Farm Network Design (WFND)

$N-k$ Survivable Grid Design

Conclusion

- The Extensive Form or Deterministic Equivalent
 - Write down the full variable and constraint set for all scenarios
 - Write down, either implicitly or explicitly, non-anticipativity constraints
 - Attempt to solve with a commercial MILP solver
 - Great if it works, but often doesn't due to memory or time limits
- Time-stage or “vertical” decomposition
 - Benders / L-shaped methods (including nested extensions)
 - Pros: Well-known, exact, easy for (some) 2-stage problems, parallelizable
 - Cons: Master problem bloating, slow convergence for (some) 2-stage problems, multi-stage difficulties
- Scenario-based or “horizontal” decomposition
 - Progressive hedging / Dual decomposition
 - Pros: Inherently multi-stage, parallelizable, leverages

WFND Solution Approach

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

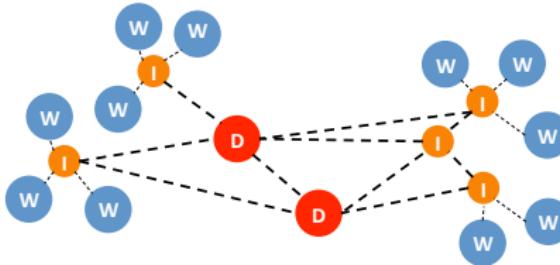
Conclusion

- Standard Benders Decomposition (S-BD)
 - performs poorly
- Accelerated Benders Decomposition (A-BD)
 - Necessary conditions
 - Network connectivity
 - Demand fulfillment – (I) area loads and (II) total system load
 - Knapsack constraints
 - Multi-cut generation

Computational Experiments

Reliable Grid
Planning

R. Chen


Overview

Wind Farm
Network
Design
(WFND)

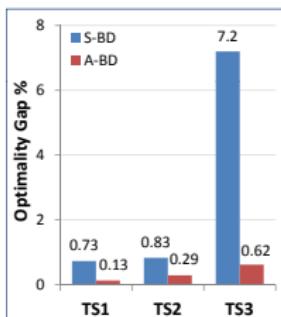
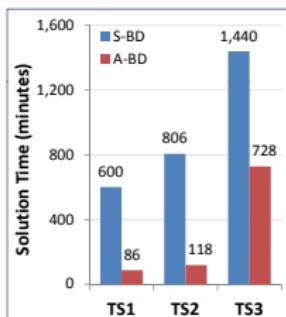
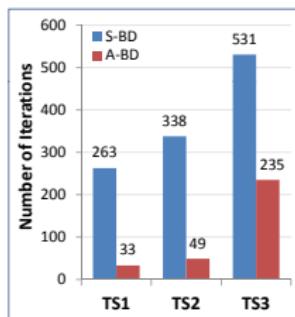
N - k Survivable
Grid Design

Conclusion

- 3 Test Systems (18-34 nodes, 25-38 arcs), 8784 scenarios
- Demand nodes represent five large metropolitan areas in the West coast (hourly load data FERC 2004)
- Coincidental wind speed data from NREL's Western Wind Data Set (same period as load)
- Candidate wind sites randomly selected out of 32,043 candidate locations
- 24 hour runtime limit (AMD Opteron 8218, 1.5 GB RAM, CPLEX 11.0)

Computational Results

Reliable Grid
Planning




R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Using S-BD, TS3 did not finish within the 24 hour runtime limit.
- Using S-BD a large number of iterations (long runtime) is required for convergence.

Ongoing Efforts

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Testing on CA's RETI data
- Testing with linearized DC transmission model with loss
(important if transmission distance is large)
- Developing new algorithms to solve LOLP-constrained
WFND problem
- Developing new models for the co-location of transmission
interconnections

Section 3: Survivable Grid Design

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

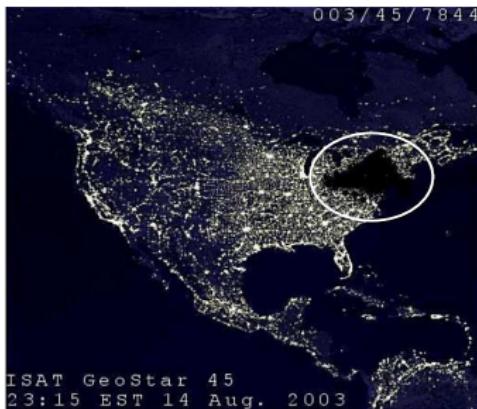
Conclusion

- Grid Security Overview
- Identification of Severe Multiple Contingencies
- $N-k$ Survivable Grid Design Problem

Power Grid Increasingly Complex and Vulnerable

Reliable Grid
Planning

R. Chen


Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

Increase emphasis on grid security following 9/11 and 2003 blackout

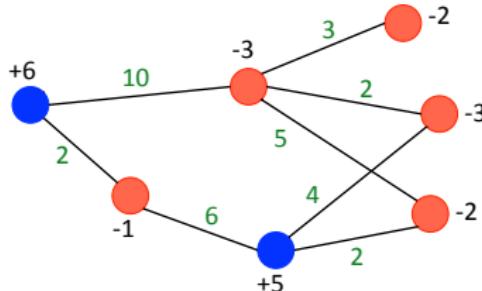
Northeast blackout started with **three** broken lines.

- **Problem:** current standard requires system to be resilient to only one failure (higher standards not enforceable)
- **Goal:** develop computational methods to
 - detect vulnerabilities of the power network
 - effectively augment the system to increase reliability/security

Grid Vulnerability As A Network Problem

Reliable Grid
Planning

R. Chen


Overview

Wind Farm
Network
Design
(WFND)

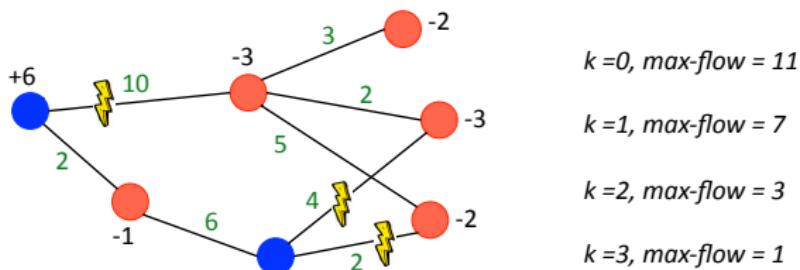
$N-k$ Survivable
Grid Design

Conclusion

- Given a graph $G=(V,E)$ with weights on its vertices
 - **positive** for generation
 - **negative** for loads
- find a partition of V into two loosely connected regions with a significant load/generation mismatch

Mininum Cardinality Network Inhibition Problem (MC-NIP)

Reliable Grid
Planning


R. Chen

Overview

Wind Farm
Network
Design
(WFND)

N - k Survivable
Grid Design

Conclusion

- Cut a minimum number⁵ of lines so that max-flow (min-cut) is below a specified bound.
- Shown to be NP-complete (Phillips 1991).
- The classical min-cut problem is a special version of network inhibition, where max-flow is set to zero.
- Can be formulated as Mixed Integer Linear Program (MILP) with $|V|+|E|$ binary variables (Pinar et al. 2010).

MILP Formulation of MC-NIP

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

N-*k* Survivable
Grid Design

Conclusion

$$\text{number of lines destroyed} \quad \left\{ \begin{array}{l} \min \quad \sum d_{ij} \end{array} \right.$$

subject to:

$$\text{capacity of cut} \quad \left\{ \begin{array}{l} \sum_{(v_i, v_j) \in E} c_{ij} s_{ij} \leq D \end{array} \right.$$

$$\text{cut identification constraints} \quad \left\{ \begin{array}{l} p_i - p_j - s_{ij} - d_{ij} \leq 0 \quad \forall (v_i, v_j) \in E \\ p_i - p_j + s_{ij} + d_{ij} \geq 0 \quad \forall (v_i, v_j) \in E \\ p_s = 0 \\ p_t = 1 \end{array} \right.$$

$$\text{s-t partitioning variables} \quad \left\{ \begin{array}{l} p_i \in \{0, 1\}, \quad \forall i \in V \end{array} \right.$$

$$\text{edge cut variables} \quad \left\{ \begin{array}{l} d_{ij} \in \{0, 1\}, \quad \forall (v_i, v_j) \in E \end{array} \right.$$

$$\text{min-cut identification variables} \quad \left\{ \begin{array}{l} s_{ij} \in \{0, 1\}, \quad \forall (v_i, v_j) \in E \end{array} \right.$$

N-k Survivable Grid Design

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

N-k Survivable
Grid Design

Conclusion

- $N-k$ survivable power grid must be able to withstand the loss of up to k lines
- Given failure budget k , the number of failure contingencies is $T = \binom{N}{1} + \cdots + \binom{N}{k-1} + \binom{N}{k}$, where N is the number of network components.
- T extremely large for moderate size N and $k \geq 2$

$N-k$ Survivable Grid Design Problem ($NK-SGD$)

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

$$\min_{\mathbf{f}, \mathbf{p}, \mathbf{q}, \mathbf{x}} \underbrace{\sum_{(i,j) \in \mathcal{A}: i < j} c_{ij} x_{ij}}_{\text{capacity expansion cost}} + \underbrace{M \sum_{s=1}^T \sum_{i \in \mathcal{N}} q_i^s}_{\text{load shedding penalty}}$$

s.t.

flow balance $\left\{ \begin{array}{l} -p_i^s + \sum_{j:(i,j) \in \mathcal{A}} f_{ij}^s - \sum_{j:(j,i) \in \mathcal{A}} f_{ji}^s - q_i^s = b_i \quad \forall i \in \mathcal{N}, s = 1 \cdots, T \end{array} \right.$

flow capacity $\left\{ \begin{array}{l} 0 \leq f_{ij}^s \leq u_{ij} x_{ij} \quad \forall (i,j) \in \mathcal{A}^{-s} : i < j, s = 1 \cdots, T \\ 0 \leq f_{ij}^s \leq 0 \quad \forall (i,j) \in \mathcal{A}^s, s = 1 \cdots, T \end{array} \right.$

generation capacity $\left\{ \begin{array}{l} 0 \leq p_i^s \leq u_i \quad \forall i \in \mathcal{N}, s = 1 \cdots, T \end{array} \right.$

$$q_i^s \geq 0 \quad \forall i \in \mathcal{N}, s = 1 \cdots, T$$

$$x_{ij} \in \{0, 1\} \quad \forall (i,j) \in \mathcal{A} : i < j$$

Observations

- $NK-SGD$ is an extremely large MILP even for moderate N and k
 - For $N = 1000$ and $k = 2$, there are over 500,000 failure contingencies
- Small instances solvable directly using commercial MILP solver
- Moderate instances extremely hard to solve (long runtime and large memory usage)

NK-SGD Solution Approach 1

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N\text{-}k$ Survivable
Grid Design

Conclusion

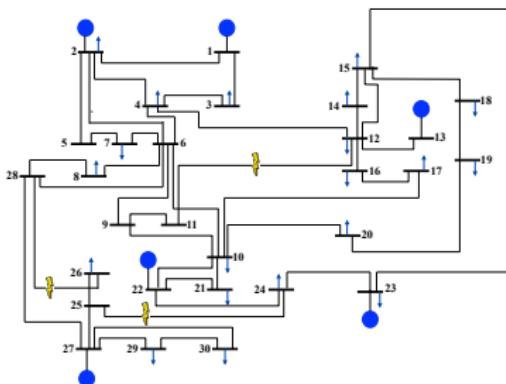
- ***L*-Shaped Method/Benders Decomposition**
 - First-stage/master problem – network design decisions
 - Second-stage/subproblem – network flow problems (one for each failure contingency)
- For moderate size instances up to 100x faster than direct approach using commercial MILP solver
 - e.g. $N \in [50, 200]$ and $k \leq 2$
- For larger instances, this approach still not tractable as the number of possible contingencies is prohibitively large

NK-SGD Solution Approach 2

Reliable Grid
Planning

R. Chen

Overview


Wind Farm
Network
Design
(WFND)

N-k Survivable
Grid Design

Conclusion

- *L*-Shaped Method/Benders Decomposition not appropriate for larger *NK-SGD* problems
- **Delayed Contingency Generation Algorithm (DCGA)** for solving large instances
 - Master-slave decomposition algorithm
 - Failure contingency generation embedded within decomposition algorithm
 - MC-NIP used to generate failure contingencies
 - New failure contingency added to scenario list
 - Solve minimum cost flow problem to generate optimality (separation) cut

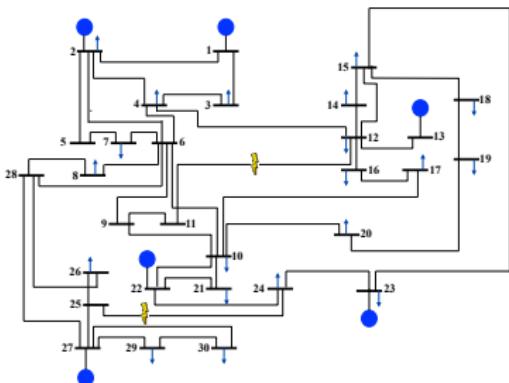
Computational Experiment: IEEE 30-Bus System $N-1$

IEEE 30-Bus System

- Three candidate lines identified
- The most severe failure can cause a blackout with 372 MW loss (out of a total of 1655 MW)
- Current system can be augmented to meet $N-1$ security criteria with the addition of three new lines

Computational Experiment: IEEE 30-Bus System $N\text{-}2$

Reliable Grid
Planning


R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N\text{-}k$ Survivable
Grid Design

Conclusion

IEEE 30-Bus System

- 632 failure contingencies identified (out of 7503 possible contingencies)
- The most severe failure can cause a blackout with 408 MW loss (out of a total of 1655 MW)
- Current system can be augmented to meet $N\text{-}2$ security criteria with the addition of 20 new lines

Computational Results

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

N - k Survivable
Grid Design

Conclusion

<i>IEEE Test Systems</i>	<i>K</i>	<i>N</i>	<i># of possible contingencies</i>	<i>Full MIP (sec.)</i>	<i>Benders Decomposition (sec.)</i>	<i>Delayed Contingency Generation (sec.)</i>
30	1	82	82	0	0	0
118	1	358	358	20	4	4
179	1	444	444	33	11	19
30	2	123	7,503	81,722	36	3
118	2	537	143,916	x	2,865	40
179	2	666	221,445	x	9,974	85

- DCG more than 100x faster than standard Benders Decomposition approach

Ongoing Efforts

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Testing on larger IEEE Systems using DCGA
- Extension to DC power flow model

Section 4: Conclusion

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Summary
- Acknowledgements
- Questions?

Summary

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Stochastic mixed-integer programs are a natural modeling paradigm for solving many core grid operations and planning problems
- Solver technologies capable of solving realistic instances are emerging
 - But many challenges remain, both in terms of research and deployment
- Sandia is developing algorithms (and corresponding software) to address what we view as the challenges (or at least challenges we can effectively address!)
 - Frameworks to support rapid modeling and solver prototyping
 - Scalable parallelization of decomposition strategies
 - Rigorous quantification of uncertainty bounds on solution costs
 - Open-source solutions

Related Work

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Generation expansion
 - Bloom 1983, Gorenstein et al. 1993, Malcolm and Zenios 1994
- Transmission expansion
 - De la Torre et al. 1999, Oliveira et al. 2005, Shrestha et al. 2004
- Integrated transmission and generation expansion
 - Jirutitijaroen and Singh 2008, McCusker and Hobbs 2003
- Wind system expansion
 - Milligan and Factor 2000, Oh and Short 2009
- Network Vulnerability and Survivability
 - Bienstock and Verma 2010, Pinar, Meza, Donde, and Lesieutre 2010, Smith, Lim and Sudargho 2007

Questions?

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

N-k Survivable
Grid Design

Conclusion

Why An Integrated Planning Approach?

- Wind and transmission are almost always built by separate organizations.
- Chicken-and-egg problem:
 - Wind developers not building if they can't access transmission
 - Transmission co. not building if no electrons flowing on wires
- Public agencies identifying resource in need of transmission
 - Incentives for transmission companies to build
 - If transmission is built, the wind developers will come
- Public agencies are engaging in centralized planning processes to determine the best location for this infrastructure (e.g. ERCOT's CREZ program, CA's RETI program)

Acknowledgments

Reliable Grid
Planning

R. Chen

Overview

Wind Farm
Network
Design
(WFND)

$N-k$ Survivable
Grid Design

Conclusion

- Key Collaborators:
 - Duncan Callaway (University of California, Berkeley)
 - Amy Cohn (University of Michigan, Ann Arbor)
 - Ali Pinar (Sandia National Laboratories)
- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.