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Abstract 
 

Commercial low temperature cofired ceramic (LTCC) technology is established in microelectronics and 
microsystems packaging, multichip and radio frequency (RF) modules, and sensors.  The ability to combine 
structural considerations with embedded traces and components using laminated glass-ceramic tapes has created 
solutions to unconventional packaging requirements of micro-electro-mechanical systems (MEMS) devices.   Many 
MEMS devices such as resonators are very sensitive to pressure and require packaging in a vacuum environment.  
Attaining and maintaining desirable pressure levels in sealed vacuum packages requires knowledge of the 
permeation characteristics of the vacuum envelope and the sealing materials. 

An experimental system to measure the time dependent gas permeation through LTCC at temperatures 
from room temperature to 500°C has been developed.  This system utilizes a membrane technique in which a gas is 
allowed to permeate through a test sample, held at a constant temperature, into a high vacuum chamber where it is 
detected using mass spectrometry.  The gas permeation value is determined from the steady state gas flux through 
the sample.  The gas diffusivity and solubility in the material were calculated using data from the time dependent 
approach to the steady state condition.  The gas-solid permeation data for helium through DuPont 951 LTCC is 
presented and compared to the permeation through other common vacuum envelope materials such as glasses and 
high-purity alumina ceramics.  Application of the permeation data to the prediction of vacuum levels inside typical 
LTCC packaging is discussed.  This data can further be utilized in designs to create LTCC packages that meet 
specific pressure/time operating requirements. 
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Introduction 
 

	 Gas permeability exists, at some level, for 
almost all materials used in vacuum technology and 
packaging.  This is particularly true of light gases 
such as helium and hydrogen. Therefore, to achieve 
and maintain a desired pressure level inside small 
vacuum packages, a thorough understanding of the 
permeation characteristics of the package materials is 

required.  Permeation data exists for many glasses 
and high alumina concentrations ceramics [1, 2].  
Recent interest in fabricating vacuum packages using 
low temperature cofired ceramics (LTCC) has 
generated the need for gas permeation data on these 
packaging materials. 

Gas diffusion in solids can be described by 
Fick’s laws.  Using a concentration independent 
diffusion coefficient D, the concentration c of the 
diffusing species is given by Fick’s second law [3]: 
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For diffusion in a planar membrane equation 
(1) becomes: 
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Permeation of a gas through a membrane 
involves the following steps: 

(a) Adsorption of the gas to the membrane 
surface 

(b) Solution/dissociation of the gas from the 
surface into the bulk 

(c) Diffusion through the membrane 
(d) Dissolution/recombination from the solution 

to the surface on the low pressure side 
(e) Desorption of the gas from the surface 

A diatomic gas, such as hydrogen, would 
involve the additional steps of dissociation and 
recombination at (b) and (d).  While any of these 
steps can be rate limiting, permeation which is 
diffusion controlled, is typically the slow step for 
reasonably thick membranes [4]. 

To solve equation (2), we apply the initial 
and boundary conditions at which the membrane is 
initially degassed, which is c(x,t=0)=0. The 
concentration on the upstream surface is constant for 
t	൒	0, which is c(x=0,t)=S ௢ܲ

௡  where S is the 
solubility constant,  ௢ܲ

௡ is the upstream pressure and 
n = ½ for diatomic gases and n = 1 for non-
dissociative gases.  The downstream pressure, which 
for our experiments is always in high vacuum, is 
essential zero, c(x=d,t)=0.  These conditions yield 
the solution shown in equation (3) when converted to 
gas flux Q, through a membrane of thickness d [3, 5]. 
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K = DS (5)

Q = KP/d (6)

Permeability K is proportional to the gas 
diffusion constant and the solubility constant, 
equation (5), which can be determined from the 
equilibrium flow rate.  This occurs at long times and 
is represented by equation (4).  K is commonly 
expressed as the amount of gas (cm3 STP) permeating 
through a 1 cm2 area, a thickness of 1 cm and a 
pressure delta of 1 atmosphere for 1 second.  This 
gives units for K of cm3 (STP) cm / s cm2 atm.  The 
flux or flow rate per unit area of a gas through the 
membrane material would then be equal to the 
permeability times the pressure differential over the 
material thickness or equation (6). 

Experimental 
 

The LTCC permeation membranes used in 
this study were prepared from 0.254 mm thick 
DuPont 951PX green tape, lot number UF74-1001.  
The expected shrinkage in the z-direction was 
17.86%.   Samples of different thickness values were 
desired and fabricated by layering green tape as 
shown in Table 1. 

Table 1 - LTCC Thickness Fabrication 

Number 
of 
Layers 

Stacking 
Orientation 

Green 
Thickness 
(mm) 

Fired 
Thickness 
(mm) 

3 ↕↔↕ 0.762 0.627 

4 ↕↔↕↔ 1.016 0.841 

5 ↔↕↔↕↔ 1.270 1.052 

6 ↕↔↕↔↕↔ 1.524 1.255 

  

The green tape stack was laminated at 70°C 
and 10.6 MPa for 15 minutes.  The laminated stack 
was then fired in a muffle furnace at 450°C for 120 
minutes followed by a hold at 850°C for 45 minutes.  
Disks with a diameter of 47.63 mm were laser cut 
from these fired substrates to generate specimens for 
the permeation test system.   

Prior to use, the membranes were vapor 
degreased with Lenium ES and solvent rinsed with 
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series expansion of this equation to n=41, was 
applied from which both K and D were determined.  
The permeation constant can also be calculated by 
applying equation (6) to the steady state equilibrium 
flux data.  The diffusion constant could also be 
calculated by a time lag method described by Swets 
[6]. 

	

Figure 3 - Experimental breakthrough flux data	

The temperature dependence of helium 
permeation through DuPont 951 LTCC was 
evaluated over a temperature range of 300°C to 
450°C. To make measurements at low temperatures 
would require either thinner material or much longer 
measurement times.   Figure 4 shows the log of the 
helium permeation constant plotted versus inverse 
temperature to make an Arrhenius style plot.  Fitting 
the data to the Arrhenius equation, shown in equation 
(7) resulted in a pre-exponential factor of  
Ko=3.17x10-7 cm3(STP) cm/s cm2 atm and an 
activation energy of EK=8.7 kcal/mole.

Figure 4 – Helium permeability as a function of 
temperature for DuPont 951 
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Values of the helium diffusion coefficient were also 
calculated over the temperature range of 300°C to 
450°C. Figure 5 shows the log of the helium 
diffusion constant plotted versus inverse temperature 
to make an Arrhenius style plot.  Fitting the 
temperature dependent diffusion data to equation (8), 
resulted in a pre-exponential factor of Do=6.28x10-4 
cm2/s and an activation energy of ED=12.4 kcal/mole. 

	

Figure 5 – Helium diffusion data as a function of 
temperature for DuPont 951		

	

The solubility of helium in LTCC can be 
calculated from this data using equation (5) which 
shows that the permeability is equal to the diffusion 
multiplied by the solubility.   

Figure 6 is a plot of the temperature 
dependence of the helium permeability constant for 
LTCC along with some glasses and ceramic materials 
for comparison.  It should be noted that LTCC is 
comprised of alumina and 30 to 60% glass, according 
to the MSDS.  Therefore it shouldn’t be surprising 
that the measured value for permeability was found 
to be between the permeability of high purity alumina 
ceramics and glasses. 
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