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Spacecraft wiring harnesses can fundamentally alter a spacecraft’s structural dynamics, ne-
cessitating a model to predict the coupled dynamic response of the structure and attached
cabling. While a beam model including first-order transverse shear can accurately predict
vibration resonance frequencies, current time-domain damping models are inadequate. For
example, the common proportional damping model results in modal damping that de-
pends unrealistically on the frequency. Inspired by a geometric rotation-based viscous
damping model that provides frequency-independent modal damping in an Euler-Bernoulli
formulation, a time-domain viscous damping model with terms associated with the shear
and bending angles is presented. This model demonstrates a much weaker dependence
on frequency than proportional damping models. Specifically, the model provides modal
damping that is approximately constant in the bending-dominated regime (low mode num-
bers), increasing by at most 6% for a particular selection of bending and shear angle-based
damping coefficients. In the shear-dominated regime (high mode numbers), damping values
increase linearly with mode number and are proportional to the shear angle-based damp-
ing coefficient. A key feature of this model is its ready implementation in a finite element
analysis, requiring only the typical mass, stiffness, and geometric stiffness (associated with
axial loads) matrices as developed for an Euler-Bernoulli beam. Such an analysis using
empirically determined damping coefficients generates damping values that agree well with
existing spacecraft cable bundle data.

Nomenclature

α viscous damping coefficient
β shear angle

ε nondimensional shear parameter, EIπ2

κAGL2

κ shear coefficient
[M ], [K], and [KG] beam finite element mass, stiffness, and geometric stiffness matrices
ωm natural frequency of vibration
ρ density
ϕ rotation of beam centerline associated with bending
ζm modal damping ratio
A cross-sectional area
am modal coordinate
E Young’s modulus
G shear modulus
I moment of inertia
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L length
m mode number
Mv internal bending moment
q distributed lateral load
t time
Vv shear force
w transverse deflection
x spatial coordinate along beam neutral axis

I. Introduction

Spacecraft contain a large amount of cabling to handle high data and power requirements. With the
decreasing density of structural materials and increasing required observation, control, and data transfer

capabilities, cables can account for up to 30% of the mass of the spacecraft.1,2 These cables must be attached
to the structure at numerous tiedown points, leading to interaction with and alteration of the spacecraft
structure dynamics. Figure 1 shows a typical number of cables with tiedowns in a U.S. Air Force Research
Laboratory (AFRL) spacecraft during final integration.

Figure 1. AFRL spacecraft bus with many
wrapped and harnessed cable bundles.

For many spacecraft, the coupled structural dynamics
are not initially modeled and are observed through ground
system-level testing.2 While such testing could provide the
knowledge required to understand the coupling, it is more
desirable and effective to begin with an accurate dynamics
model. Furthermore, it may not even be possible to ground
test some future deployable spacecraft, meaning an accurate
model will be essential, for example, for the design of the
spacecraft structural control system.

Previous work modeled the wiring cables and harnesses
as beams with effective properties to account for the various
materials used in the cabling, insulation, wrapping, and har-
nessing structures.1,2, 3, 4 In addition to the typical mass and
stiffness terms, these models incorporated transverse shear
effects and employed structural damping through a loss fac-
tor in a NASTRAN finite element model. While this ap-
proach provided satisfactory results, a better understanding
of the physical damping mechanism is preferred for incorpo-
ration in a time-domain beam model that accurately repre-
sents the cable behavior and the influence the wiring har-
nesses have on the spacecraft structure.

II. Damping Model Background

In considering damping models for use with shear beams, it
is helpful to look at the variety of damping approaches in
Timoshenko beam theory since many will directly translate
to shear beam theory upon neglecting any rotary inertia terms. One common approach is a structural
damping model involving complex forms of the system parameters. Often incorporated as strain- and shear-
based damping mechanisms through the Young’s and shear moduli, this method can also include other
dissipative mechanisms.5,6, 7, 8, 9 For example, Lundén and Åkesson considered a complex form for every term
in the coupled Timoshenko beam equations, resulting in 14 damping terms, although with the understanding
that only a few terms would be non-zero in almost all cases.7 The boundary conditions can also be included,
for example through complex end support and end fixity terms as described by MacBain and Green.5

Another common approach to modeling damping in Timoshenko beams is through some variation of
proportional viscous damping, often used for its mathematical convenience. In this case, damping terms
are a linear combination of the mass and stiffness differential operators, although it is quite common to
use only the mass or stiffness operator.10 For example, some researchers only consider damping associated
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with the mass operator with no spatial derivatives – i.e., deflection or rotation alone.11,12,13,14 Others
consider only strain- or shear-based damping, perhaps through a viscoelastic formulation of the constitutive
equations.15,16,17 As with structural damping, the concept of proportional damping can be extended to
apply to the boundary conditions to model their associated dissipative mechanisms.14,18

Unfortunately, proportional damping is typically unrealistic, providing modal damping that is highly
frequency-dependent. With an Euler-Bernoulli beam, using a stiffness-based (mass-based) term only, the
damping will increase (decrease) proportionally with the square of the mode number. While this effect is
weakened with the inclusion of shear effects, these models will typically provide realistic modal damping
values for at most a few modes of vibration within a specific frequency range of interest. Lesieutre addressed
this unrealistic behavior, proposing a geometric rotation-based viscous damping model that yields frequency-
independent modal damping.19 An interpretation of this model involves an internal shear force proportional
to the time rate of change of the beam slope, and thus a dynamic component of the shear force. One could
instead view the term as involving an internal moment proportional to the transverse velocity.

Chen and Russell earlier provided a mathematical treatment of a general approach to frequency-independent
modal damping.20 Representing the second-order governing equation of motion in terms of a spatial differ-
ential operator corresponding to strain energy (stiffness), they introduced an additional spatial differential
operator to correspond to energy dissipation (damping) that resulted in modal damping that was constant
across all modes. Although this approach does not provide any physical interpretation of the damping mech-
anism, it does present a mathematical model that may be employed when frequency-independent modal
damping is desired.

Section III presents the governing equations of motion for a beam with first-order transverse shear effects.
The effects of a proposed rotation-based viscous damping model (similar to that developed by Lesieutre for
Euler-Bernoulli beams) are demonstrated and compared to those of motion- and strain-based viscous damp-
ing models.19 The models are analyzed using simply-supported boundary conditions to illustrate general
trends and provide key insight into damping behavior. Section IV presents a finite element formulation of
the proposed model and examines damping behavior using both simply-supported and clamped-clamped
boundary conditions. Finally, finite element predictions of damping values for clamped-clamped boundary
conditions are compared to those of spacecraft cables tested by Babuška et al. and Goodding et al.2,3

III. Governing Equations of Motion

A primary goal of this work is to develop a time-domain damping model that accurately reflects the dynamics
of spacecraft power and data cabling. Existing experimental data indicates a shear beam formulation with a
damping model that provides approximately frequency-independent modal damping will be especially useful.3

While an understanding of the corresponding physical mechanism of dissipation is ideal, the mathematical
implications of a prospective model are of primary concern. As such, two common viscous damping models
(motion-based and strain-based) are analyzed and compared to a proposed model (rotation-based) that is
mathematically similar to the rotation-based model proposed by Lesieutre.19

III.A. Shear Beam Equations

Consider the governing differential equations for a shear beam (first-order shear term in addition to Euler-
Bernoulli formulation; alternatively, a Timoshenko formulation without rotary inertia) without damping. In
this case, three variables describe the bending and shear deformation of the beam; however, only two are
independent:21

β =
∂w

∂x
− ϕ (1)

Using the transverse deflection and the rotation associated with bending, the equations of motion are

− ∂

∂t

(
ρA

∂w

∂t

)
+

∂

∂x

[
κAG

(
∂w

∂x
− ϕ

)]
= −q

∂

∂x

(
EI

∂ϕ

∂x

)
+ κAG

(
∂w

∂x
− ϕ

)
= 0

(2)

For convenience, consider a simply-supported beam with linear, isotropic, homogeneous material and con-
stant cross-section. Representing spatial partial derivatives as ( )′ and temporal partial derivatives as ˙( ),
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the coupled equations are then

−ρAẅ + κAG (w′′ − ϕ′) = −q
EIϕ′′ + κAG (w′ − ϕ) = 0

(3)

For this specialized case of constant parameters, the equations of motion can be rewritten in terms of only
one of the three variables. Each of the three possible equations then takes on the same differential form
(that is, disregarding the forcing terms):

ρAẅ − ρAEI

κAG
ẅ′′ + EIw′′′′ = q − EI

κAG
q′′ (4)

ρAϕ̈− ρAEI

κAG
ϕ̈′′ + EIϕ′′′′ = q′ (5)

ρAβ̈ − ρAEI

κAG
β̈′′ + EIβ′′′′ = − EI

κAG
q′′′ (6)

As such, this analysis proceeds in terms of the transverse displacement w; a similar analysis in terms of ϕ
or β produces similar results. With a simply-supported shear beam, the boundary conditions are

w(0, t) = w(L, t) = w′′(0, t) = w′′(L, t) = 0 (7)

which result in mode shapes with an integer number of half-sine waves upon solving the associated boundary-
value eigenvalue problem:10

wm = am sin
mπx

L
(8)

Substituting the mode shape into the Equation (4) with zero forcing and neglecting damping yields the
unforced, undamped modal equation of motion:

ρA

[
1 +

EI

κAG

(mπ
L

)2]
äm + EI

(mπ
L

)4
am = 0 (9)

Introducing a nondimensional shear parameter ε ≡ EIπ2

κAGL2 , the natural frequency is

ωm =

√
EI

ρA

(mπ
L

)2
︸ ︷︷ ︸
Euler-Bernoulli

1√
1 + εm2

(10)

Figure 2. Normalized natural frequency ωm/ω1 (blue
circles) with asymptotic lines (black dashed lines) for
ε = 0.01.

The inclusion of transverse shear thus adds a term
that reduces the natural frequency from that of an
Euler-Bernoulli beam, with the effect greater at higher
mode numbers (frequencies). The shear parameter ε
indicates the influence of transverse shear: as ε → 0,
the shear stiffness becomes much greater than the
bending stiffness, meaning the beam deflection con-
tains bending only (and the natural frequency of Equa-
tion (10) reduces to that of an Euler-Bernoulli beam).
For ε → ∞, the bending stiffness is much greater, al-
lowing the beam to only deform in shear. In a similar
manner, higher modes can be considered to be shear-
dominated with lower modes bending-dominated, as
indicated in Figure 2. Certainly a transition between
these two regimes exists; a consideration of the shear-
based term

√
1 + εm2 in Equation (10) indicates the

point where εm2 = 1 may be of interest. As such, this
transition will be considered to approximately occur
at m = 1/

√
ε (shown in Figure 2 at m = 10 for the

case of ε = 0.01), although in reality the transition occurs over a range of modes.
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III.B. Motion- and Strain-Based Viscous Damping Models

Consider two common damping models that provide proportional damping: motion- and strain-based viscous
damping. These models are discussed only for their prevalence in damping modeling and not for any accuracy
in describing the nature of the energy dissipation. The motion-based model involves an external lateral force
distribution related to and opposing the beam velocity:

q = −αM ẇ (11)

Strain-based viscous damping involves an internal moment related to the beam centerline curvature rate of
change (in time):

Mv = αEI ϕ̇
′ (12)

Spatially differentiating the (negative) bending moment twice produces a distributed force for direct incor-
poration in the governing equations of motion; adding this and the distributed force in Equation (11) to
Equation (3) results in the damped governing equations of motion:

−ρAẅ + κAG (−ϕ′ + w′′) = −q + αM ẇ + αEI ϕ̇
′′′

κAG (−ϕ+ w′) + EIϕ′′ = 0
(13)

Again writing the equations as a single differential equation in w,

ρAẅ − ρAEI

κAG
ẅ′′ + αM

(
ẇ − EI

κAG
ẇ′′
)

+ αEIẇ
′′′′ + EIw′′′′ = q − EI

κAG
q′′ (14)

Enforcing simply-supported boundary conditions and considering only unforced motion in mode m, the
modal equation of motion is

äm
[
ρA
(
1 + εm2

)]
+ ȧm

[
αM

(
1 + εm2

)
+ αEI

(mπ
L

)4]
+ am

[
EI
(mπ
L

)4]
= 0 (15)

Comparing to the unforced canonical equation of motion

äm + 2ζmωmȧm + ω2
mam = 0 (16)

the modal damping is

ζm =
1

2
√
ρAEI

[
αM

√
1 + εm2(
mπ
L

)2 + αEI

(
mπ
L

)2
√

1 + εm2

]
(17)

As in the previous analysis, these damping models have different behaviors in the bending- and shear-
dominated regimes. Quantifying these effects in terms of Equation (17),

ζm ∼

αM L2

π2
1
m2 + αEI

π2

L2m
2 εm2 � 1

αM
L2

π2

√
ε
m + αEI

π2

L2
m√
ε

εm2 � 1
(18)

Specifically, motion-based (strain-based) viscous damping produces modal damping ratios that decrease
(increase) with the square of the mode number in the bending-dominated regime and the mode number
in the shear-dominated regime, as shown in blue circles (cyan squares) in Figure 3(a). Noting that the
normalized damping values (that is, normalized by the damping of the first vibration mode ζm/ζ1) in
Figure 3(a) are plotted on a logarithmic scale, the damping values produced by motion- and strain-based
viscous damping models quickly become unrealistic, at least for this application. Typical shear parameter
values are ε ≈ 0.01 − 0.03 for the spacecraft cables tested by Babuška et al.2 For the particular case of
ε = 0.01, the strain-based model produces modal damping values that increase thirty-fold over the first six
modes; data presented by Goodding et al. show that actual cable damping values change by at most a factor
of two.3
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(a) Motion-based (blue circles), strain-based (cyan squares),
and rotation-based damping models with αβ/αϕ = 0 (red
crosses) and αβ/αϕ = 1 (green x’s).

(b) Rotation-based damping models with αβ/αϕ = 0 (red
crosses), 1/4 (dark orange up triangles), 1/2 (light orange
asterisks), 3/4 (olive down triangles), and 1 (green x’s).

Figure 3. Frequency dependence of normalized modal damping for several viscous damping models, with ε = 0.01.

III.C. Rotation-Based Viscous Damping Model

Consider now a rotation-based damping model similar to that proposed by Lesieutre.19 For a shear beam,
this model can be viewed as two internal shear forces associated with the time rate of change of the shear
and beam centerline bending angles:

Vv = −αβ β̇ − αϕϕ̇ (19)

This force can of course be described in terms of other variables using Equation (1); however, this particular
representation provides perhaps the best physical understanding of the damping mechanism. More signif-
icantly, it allows selection of the two damping coefficients to correspond with mechanisms associated with
shear and bending deformation. Differentiating the shear force with respect to x and including it in the
equation of motion results in

−ρAẅ + κAG (−ϕ′ + w′′) = −q − αβ β̇′ − αϕϕ̇′

κAG (−ϕ+ w′) + EIϕ′′ = 0
(20)

Once again a single equation of motion can describe the beam dynamics, shown here in terms of the bending
rotation ϕ:

ρAϕ̈− ρAEI

κAG
ϕ̈′′ − αφϕ̇′′ + αβ

EI

κAG
ϕ̇′′′′ + EIϕ′′′′ = q′ (21)

Considering only motion in mode m with simply-supported boundary conditinos, the modal equation of
motion is

äm
[
ρA
(
1 + εm2

)]
+ ȧm

[(mπ
L

)2 (
αϕ + αβεm

2
)]

+ am

[
EI
(mπ
L

)4]
= 0 (22)

Comparing to the unforced canonical equation of motion, the modal damping is

ζm =
1

2
√
ρAEI

αϕ + αβεm
2

√
1 + εm2

(23)

Figure 3(a) also shows these damping values for αβ = 0 (red crosses) and αβ = αϕ (green x’s), clearly
displaying how this model provides modal damping with significantly greater frequency-independence that
the motion- and strain-based models. Furthermore, a wide range of damping curves can be produced by
proper selection of the damping coefficients. Figure 3(b) demonstrates this range, showing the normalized
modal damping (ζm/ζ1) for several selections of αβ/αϕ.

A key feature of this model and this representation in particular is the separation of shear- and bending-
related damping contributions. Recalling that lower modes of vibration are bending-dominated and higher
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modes are shear-dominated, it is perhaps unsurprising that the bending-related damping term is most im-
portant at low mode numbers and the shear-related term dominates at high mode numbers:

ζm ∼

αϕ εm2 � 1

αβ
√
εm εm2 � 1

(24)

Indeed, Figure 3(b) shows little variation in damping over the first few modes regardless of αβ . At higher
modes, however, αβ plays a much more significant role, determining the slope of the normalized damping
curve.

III.D. Mathematical Form of Frequency-Independent Modal Damping

Based on existing spacecraft power and data cable damping data, it is of interest to develop a viscous damping
model that provides frequency-independent modal damping. Consider again the undamped differential forms
of Equations (4)-(6). The unforced equation of motion could instead be written in terms of spatial differential
operators, for example:10

Mẅ + Cẇ +Kw = 0 (25)

where

M = ρA

(
1− EI

κAG
()

′′
)

and K = EI ()
′′′′

(26)

A key departure from the framework presented by Chen and Russell is the inclusion of transverse shear:
here the kinetic energy (mass) is also associated with a spatial differential operator.20 Nonetheless, one can
still choose C to yield a desired level of constant damping ζ0, independent of frequency:

C = 2ζ0
√
KM (27)

The square root of K is rather straight-forward, but
√
M does not simplify to a term containing only whole

derivatives. Instead, consider a series expansion of the quantity:

√
M =

√
1− EI

κAG
()

′′ ≈ 1− 1

2

EI

κAG
()

′′ − 1

8

(
EI

κAG

)2

()
′′′′ − · · · (28)

Comparing to Equation (21), the proposed rotation-based viscous damping model with αβ/αϕ = 1/2 is
exactly the two-term series expansion of frequency-independent modal damping. In other words, the model
provides damping behavior that exhibits the greatest amount of frequency-independence without incorporat-
ing higher-order spatial derivatives (at least sixth-order) or fractional derivatives in the equation of motion.
Figure 3(b) also demonstrates that selecting αβ/αϕ = 1/2 (curve with asterisks) results in approximately
constant modal damping, at least throughout the bending regime. Recalling Equation (23), the modal damp-
ing increases approximately 6% from the first mode to the bending- / shear-dominated regime transition
(εm2 = 1). Smaller values of αβ/αϕ result in an initial decrease of damping values and could extend the
range of approximately frequency-independent modal damping (as with αβ/αϕ = 1/4, the curve with up
triangles in Figure 3(b)).

IV. Damping Results & Experimental Data

IV.A. Finite Element Formulation

While the special case of simply-supported boundary conditions allows an analytical treatment and provides
excellent insight into the behavior of the various damping models, a more general approach is preferred. As
such, consider a single equation of motion incorporating the motion-, rotation-, and strain-based viscous
damping terms:

ρAϕ̈− ρAEI

κAG
ϕ̈′′ + αM

(
ϕ̇− EI

κAG
ϕ̇′′
)
− αφϕ̇′′ + αβ

EI

κAG
ϕ̇′′′′ + αEI ϕ̇

′′′′ + EIϕ′′′′ = q′ (29)

Using the weak form of the equation of motion and integrating by parts leads to a finite element formulation
that employs the typical mass [M ], stiffness [K], and geometric stiffness [KG] (related to axial loading)
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finite element matrices. Notably, the proposed viscous damping terms can be readily implemented in a finite
element formulation using commonly available matrices:[
ρA

(
[M ] +

EI

κAG
[KG]

)]{
ä

}
+

[
αM [M ] +

(
αM

EI

κAG
+ αϕ

)
[KG] +

(
αβ

EI

κAG
+ αEI

)
[K]

]{
ȧ

}
+

[
EI [K]

]{
a

}
=

{
F

}
(30)

Figure 4. Predicted modal damping values for simply-
supported (SS) and clamped-clamped (CL-CL) boundary
conditions with αϕ = 0.05 and αβ/αϕ = 0, 1/10, 1/4, 1/2,
and 1 (from bottom to top), with ε = 0.021.

Figure 4 shows the results of such an implemen-
tation, for both simply-supported (solid lines, SS)
and clamped-clamped (dashed lines, CL-CL) bound-
ary conditions. In fact, the analytical results of Equa-
tion (23) are also plotted on this graph and coincide
with those produced by the finite element analysis,
confirming the validity of the modeling approach. The
damping behavior of the rotation-based model with
clamped-clamped boundary conditions departs signif-
icantly from that of simply-supported boundary con-
ditions in the bending-dominated regime. It is re-
duced approximately 45% in the first mode, increases
rapidly with mode number, and then approximately
equals that of simply-supported boundary conditions
throughout the shear-dominated regime. In general,
the damping values of the first few modes are depen-
dent on the boundary conditions; however, boundary
conditions have little effect at higher mode numbers.
If frequency-independent modal damping were a key
goal, a potential modeling approach would be to incor-
porate some level of motion-based viscous damping – it provides appreciable damping in the first few modes
only, decreasing with the square of the mode number. Note that this is purely a mathematical solution, not
an indication of the underlying physical explanation for differing damping values.

IV.B. Model-Data Comparison

With the finite element analysis in agreement with the analytical calculations of damping values, the most
significant test of the model’s utility is a comparison to experimental data. In this particular application,
spacecraft cable bundles are of primary importance. These bundles consist of multiple twisted wire pairs
that are stitched together and wrapped in Kapton; this process and the resulting experimental data with
corresponding cable parameters are presented extensively by Ardelean et al., Babuška et al., Goodding et
al., and Coombs et al.1,2, 3, 4 Figure 5(a) displays the modal damping values for over one hundred of these
spacecraft cable bundles with clamped-clamped boundary conditions. The data comes from twelve families
of bundles, with all bundles within a family having approximately equal properties (ρ, κ, A, G, E, and I).
This difference in families at least partially explains the spread in measured damping values in Figure 5(a),
where the mean values are plotted as diamonds and the one and two standard deviation range are the dark
and light shaded areas. However, even data for a single family contains considerable variation, as shown in
Figure 5(b).

In all cases, the nondimensional shear parameter for these cables is ε < 0.03, indicating the transition
between bending- and shear-dominated regimes occurs at the sixth mode or higher; that is, the data in
Figure 5 can largely be considered to reside in the bending-dominated regime. In general, the spacecraft
cable bundles exhibit a slight decrease in modal damping values with mode number, perhaps up to 20%.
To compare these values to those produced by the finite element analysis, consider a single family of cable
bundles so that nominally identical cable bundle properties can be used. Figure 5(b) shows the experimentally
measured damping values for thirteen bundles (blue squares), their mean values (black diamonds) and one
and two standard deviations (dark and light shaded areas), and the values produced by a finite element
analysis (red solid line) with αM = 0.043, αϕ = 0.038, and αβ/αϕ = 0.3. These damping coefficients are
selected empirically to fit best with measured data and could be selected for each cable bundle family.
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(a) Data for 12 families, each consisting of several cables with
nominally identical properties.

(b) Data for one family with finite element damping values
using αM = 0.043, αϕ = 0.038, and αβ/αϕ = 0.3.

Figure 5. Modal damping values from experimental testing of individual cables (blue squares / dashed lines), with
mean values (black diamonds / solid lines) and one and two standard deviations (dark and light shaded areas).

V. Conclusions

This research seeks to provide a physically accurate time-domain viscous damping model for a shear beam
for use in modeling spacecraft wiring harnesses. Such a model is developed building on a geometric rotation-
based model that provides frequency-independent modal damping for an Euler-Bernoulli beam. This model
includes two terms associated with the time rate of change of both the beam centerline bending and shear
angles. This approach allows selection of two parameters to best represent the damping; the term associated
with the bending (shear) angle is the dominant factor in the bending-dominated (shear-dominated) regime.
Furthermore, modal damping values are approximately constant (at least for simply-supported boundary
conditions) in the bending-dominated regime, increasing by at most 6% when αβ/αϕ = 1/2. A second
key feature of this model is that it can be implemented numerically using common Euler-Bernoulli beam
finite element matrices. A finite element analysis confirms the analytical results for the case of simply-
supported boundary conditions. Clamped-clamped boundary conditions alter this approximate frequency-
independence, reducing the modal damping of the first few modes. In this case, including a motion-based
viscous damping term increases the modal damping of the first few modes and can restore an approximately
frequency-independent behavior. This approach generates good agreement between experimental data and
a finite element analysis using empirically determined damping coefficients.

The rotation-based viscous damping model proposed here does provide some physical understanding
of the energy dissipation mechanisms; however, it is used primarily for its mathematical convenience. All
comparisons with experimental data make use of empirically fit damping coefficients; ideally, these coefficients
could be calculated a priori based on beam properties. Additional explanation of the underlying physics of
the energy dissipation would aid in these calculations. Finally, it is also of interest to examine and develop
viscous damping models with similar characteristics for a Timoshenko beam for those cases when rotary
inertia cannot be neglected.
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