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Cd+2 and SeO3
-2 Bi-solute Competition  

with Ternary Complexes 
Cd+2 and SeO3

-2 Bi-solute Competition  
without Ternary Complexes 

Multi-contaminant Adsorption on Goethite 

• Hiemstra-like CD-MUSIC model 
applied to ratio of different goethite 
surfaces according to experimental 
data. 

• Experiments and modeling by 
Manigold and Katz (UT-Austin) 

Reactive Surface Sites (fr. Villalobos) 

Surface Complexation Modeling 



Long-Term Objective 
 

To use molecular modeling to investigate cation-
anion adsorption as a function of surface 

concentration in complex systems  

•Goethite-water and Goethite-NaCl  
  (101) and (100) surfaces 

•Alkaline Earth Metal – Chloride Complexation 

•Heavy Metal Force Field Parameters 

•Oxyanion (SO4
2-) force field models 



Goethite: Predominant Surfaces and Surface Sites 
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Computational Methods 
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Simulation of 192 FeO(OH) with 720 H2O and 0 to 5 M 
NaCl 
- Two faces: (100) and (101) 
- Clayff used with LAMMPS MD code 

- NVE (50,000 fs) 
- NVT (200,000 fs) 
- NVT (10,000,000 fs) 

- Snapshots every 2,000 fs 
- Simulation Cell Size: 18.06 x 18.48 x 91.91 A 



Classical Molecular Dynamics Simulations  
Goethite (100) and (101) with H2O 

(100) Surface (101) Surface 
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Goethite Surfaces with H2O  
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Goethite (100) with NaCl Solution 
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Goethite (100) with 1 M NaCl Solution 
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Goethite (100) with 4 M NaCl Solution 
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Goethite (100) with 5 M NaCl 
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Goethite (101) with NaCl Solution 
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Goethite (101) with 4 M NaCl Solution 

Layer 1A 

Layer 1B 



Goethite (101) with 5M NaCl Solution 
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Summary 

• H2O is more structured on (100) surface than on (101) surface 
of goethite. 

• Na+ adsorbs both Inner-Sphere and Outer-Sphere. 

• Cl- adsorbs as an OS complex. 

• NaCl pairing w/ Na+ as IS evident on (100) at high NaCl 
concentrations 

• Na+ and Cl- adsorption does not impact water structure on 
(100), but Na+ does impact H2O structure on (101) 



Cd+2 and SeO3
-2 Bi-solute Competition  

with Ternary Complexes 

Multi-contaminant Adsorption on Goethite 

From Na+ and Cl- Adsorption to   

1. Divalent Metal Cations 
1. Alkaline Earth Metals 
2. Heavy Metals 

2. Oxyanions 
3. Divalent Metal Cations + Anions 
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Heavy Metal Force Field Development 
Matthews and Naidoo (JPC, 114, 2010) 
• Developed method to produce force field for divalent 

metal ions in M2+SO4
2- solutions 

• Cannon et al. (1994) for SO4
2- , TIP3P for H2O  

• Metal-water interaction energies fitted with MP2/6-
311++G(3d,3p) 

• Lennard Jones parameters for Mg2+ were tuned so 
that calculated absolute free energy of hydration of 
Mg2+ matches experimental data. 

• L-J parameters for other divalent ions including Co2+, 
derived from a series of FEP calculations in which 
ions were perturbed from Mg2+ 

• Calculated log Ks for CIP, SSHIP and SHIP for M2+-SO4
2-

are in agreement with available ultrasonic and 
dielectric spectroscopic data.  



Goethite (100) 1 M MgCl2, BaCl2, CoCl2 

Mg Cl Ba Cl Co Cl 

Consistent with Katz et al. (in press) for Gibbsite 



Goethite (100) 1 M MgCl2 
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Goethite (100) 1 M BaCl2 

Ba Cl 

Layer 1 

Layer 2 



Goethite (100) 1 M CoCl2 
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Oxyanion Adsorption to Goethite 

• Started with Sulfate 

– Force field models 

• Cannon et al. (1994), J. Phys. Chem., 98, 6225-6230 . 

 

Rigid Anion 
Rigid TIP3P H2O 



Kalinichev Force Field Model for Sulfate 

IR in aqueous solution Kalinichev in gas phase 

Bend = 451 cm-1 Bend = 482 cm-1 

Stretch = 1104 cm-1 Stretch = 1273 cm-1 

Cannon Rigid TIP3P 
Interaction Energy 

Kalinichev Flexible SPC 
Interaction Energy 

-225.26 kcal/mol -248.55 kcal/mol 

IR data:  Kloprogge et al. (2002) 
American Mineralogist, 87, 623. 

• Added flexibility to Cannon et al.’s Rigid Model 



Modeling Na2SO4 Adsorption with Classical Force 
Field Models 

• Na2SO4 Concentrations 
– 0.46 molal 

– 1.00 molal 

– 1.46 molal 

– BELOW Na2SO4 Solubility 

• L-J potential at top 

• 3 vacuum boxes above 

• Simulation cell 18.06 A x 
18.48 A x 66.77 A (for H2O) 

• 50 ps equilibration NVE 

• 10 ns production NVT at 
300K 

Goethite 101 Surface 
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Cation-SO4 Pairing in Aqueous Solution 

25A x 25 A x 25 A 
< 0.5 m Na2SO4 or CoSO4 

5 SO4 in each box 
 

Na+ 

SO4
2- 

SO4
2- 

Co2+ 

Water Sulfate Sodium Persistant 
Clusters 

SPC/E 1-6 1 yes 

SPC/E 2 2 excessive 
pairing 

TIP4P/ 
2005 

2 1 solvated ion 
clusters 

SPC/E 2p 1p yes 

POL3 2(p) 1(p) no 

Dang-
Chang 

2 1 no 

After Wernersson and Jungwirth (2010) 
Different combinations of SO4, Na, and H2O 

models considered. 
Polarizability of H2O critical. 

More SSHIP and SSIP than CIP 



Metal Chloride Complex

MgCl+ CaCl+ SrCl+ BaCl+
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Need for Polarizable Water Model? 
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Larentzos and Criscenti (2008) 

 
Stability of complexes  

MgCl+ > CaCl+ > SrCl+ > BaCl+ 

*Majer and Stulik (1982) 
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Summary and Conclusions 

• H2O is more structured on (100) surface than on (101) surface 
of goethite. 

• NaCl pairing w/ Na+ as IS evident on (100) at high NaCl 
concentrations 

• Na+ and Cl- adsorption does not impact water structure on 
(100), but Na+ does impact H2O structure on (101). Therefore 
electrolyte anions will have a larger impact on the EDL on the 
(101) surface. 

• Heavy metal force field of Matthew and Naidoo (for Co2+) 
does not predict heavy metal adsorption properly. 

• Both alkaline earth metal-chloride and cation-sulfate 
complexation in solution suggest that polarizable H2O model 
is required to model ion-pairing in solution (and hence 
surfaces). 
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