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Defense Systems & Assessments Programs

Science & Technology Products
Surveillance & Reconnaissance
Integrated Military Systems
Remote Sensing and Verification
Information Operations

Space Missions

Proliferation Assessment




-

e Defense Systems & Assessments Programs

’ . A Ty
Real-time IFSAR

Surveillance & Reconnaissance

(1) Sandia National Laboratories




®

“'Sandia Technology Engaged in a Wide Variety of Missions

Multiple UAV or Manned
Antarctica Crevasse Detection in Applications
support of NSF/NYANG (X-Band)

Lunar Reconnaissance
Orbiter Mission

Real-time, 0.1m resolution
SAR on small UAVs
- Stripmap, spotlight, CCD
images downlinked in real
time to groundstation

Mini-RF Technology Demonstration

(Sponsored by NASA/NAWC)

Aided in location of subsurface water ice
deposits. Imaged entire lunar surface, including
Crevasse Detection high-resolution imagery of permanently-
shadowed regions. (S-Band)

— Space-qualified version of MiniSAR core HW usec
in imaging system electronics
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Real-Time Image

Tijeras Arroyo Golf Course: 4-inch resolution, 3.3 km range, 20050519:PASS005




VideoSAR Mode




Traditional SAR vs. VideoSAR

Traditional SAR
— phase histories are only collected during real-time apertures
— time between images = time to collect real-time aperture + time to

process image (many tens of seconds at long ranges)

— Moving targets disappear or smear, difficult to locate/track

VideoSAR

- )

real-=time apertures

phase histories are collected continuously
images are formed from overlapping sets of phase histories

time between images is user selectable and is independent of aperture
length (0.1 to 0.3 seconds seems best)

slow moving targets (< 15 mph) can often be observed/tracked
Latency < 8 sec.

>
time

VideoSAR % —

apertures

A rapid sequence of SAR images (> 1 Hz) can permit observation of target shadows
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History of CUDA and Sandia SAR Processing
Polar Format

m Start January 2007.
- Two man months for conversion of major portions of algorithm.
- Proof of concept for new development program.

- Three man months for all functions.

+ Includes range/azimuth window application, range and azimuth
compression, multiple corrections, azimuth interpolations and
phase gradient autofocus.

- Performance
+ 2k x 2k image
+ 1.8GHz Intel Zeon 4.5 Seconds
+ 8800 GTX (128 cores) 150 mS
+ Speedup 30X
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History of CUDA and Sandia SAR Processing
Overlap Subaperture Polar Format, VideoSar

m Overlap Subaperature Polar Format — Designed for embedded
multiprocessors with distributed memory systems. Includes
many additional corrections such as antenna pattern
correction, digital receiver filter corrections, range curvature
corrections, etc.

- Started September 2007

m VideoSar — design requirement 1k x 1k image @ 5 FPS, goal of
1k x 1k image @ 10 FPS.

- C1060 (240 cores) — 1k x 1k image @ 14 FPS
- C1060 (240 cores) — 2k x 2k image @ 3 FPS
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History of CUDA and Sandia SAR Processing
Coherent Change Detection

m 6 man months to convert to GPU.
- Much of which was parallelizing the tie point correlation function.

- Performance

+ 3k x 5k pair of images.
+ Quadro 5010M (348 cores) 700 mS
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History of CUDA and Sandia SAR Processing
Back Projection

m Developed directly for GPU. No autofocus at this time. Digital
Elevation Map input, non rotating coordinate frame.

m Performance 2k x 2k image
- Quadro FX 3600 (128 cores) 4 Seconds
m VideoSar Backprojection
- Quadro FX 3600 (128 cores) 250mS or 4 FPS
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Important Issues While Porting To CUDA
Memory Bandwidth Host to Device

m Most if not all Nvidia GPUs are PCle x16 (16 bidirectional lanes)
of data.

1.0 4 GB/s 2.5 -3.5 GB/s
2.0 8 GB/s 5.0-7 GBI/s
3.0 16 GB/s Unknown

m GPU compute capability 1.0 had ability to transfer data in a
single direction at a time

m GPU compute capability 2.0 has ability to transfer data
bidirectional (as well as run a kernel) concurrently
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Important Issues While Porting To CUDA
Memory Bandwidth Host to Device

m The best case theoretical data transfer rate from host to GPU is
32GB/s (PCle v3.0), only 1/6 the theoretical data rate of best
case global memory to cores (192 GB/s)!

- PCle v2.0 has had a run of almost 5 years starting at 1/11 (GTX
8800) and performing as poorly as 1/20 (GTX 285) before Fermi
class GPUs gave us bidirectional data transfer which only reset

the ratio.
- And this ratio will only get worse until PCle v4.0 is accepted.
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Important Issues While Porting To CUDA
Memory Bandwidth Host to Device

= What does this mean?
- Perform serial processes on CPU, parallel processes on GPU!
- Reduce Host->Device or Device->Host transfers

- Don’t transfer small chunks of data, combine into largest possible
structure for data transfer.
- Use bidirectional transfer of data and concurrent kernel
Invocation.
- Once the data is on the GPU, keep it there.
- Example: Phase Gradient Autofocus (PGA)

+ Much of PGA is parallel, until all of the phase errors are collapsed
into a single vector.

- Ratio of CPU vs GPU processing time ~ 1.0
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Important Issues While Porting To CUDA
Memory Bandwidth Global Memory

m What is it?
- Large bulk storage for data. 768 MB (8800 GTX) to 6 GB (M2070,
M2090)
- Fast — originally 84.6 GB/s now reaching 192 GB/s

- Latency from kernel request to register is 600 — 800 cycles.

- If blocks are created with enough free resources (see Nvidia
occupancy calculator), GPU H/W will context switch up to 1536
threads per multiprocessor to hide latency

- Accessible from all threads at all times.

+ Must be careful about multiple threads writing to common
locations. GPU does not guarantee that thread O runs before
thread N outside of a WARP.

- See section 2.2 about “Bandwidth” in the “CUDA C Best Practices
Guide” to learn more about theoretical and effective bandwidth
calculations.
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Important Issues While Porting To CUDA
Memory Bandwidth Shared Memory

- Small storage area

- Very Fast — 1 clock cycle, if you follow all of the rules!
- Accessible from all threads within a thread block.

- Not persistent after thread block completes.

- Great for small data arrays of common use to all threads within a
thread block.

- May be treated as a user managed high speed cache.
- Example

- A range dependent phase term needs to be applied to all phase
history data. The phase term may be calculated by one thread,

saved to shared memory and finally read and applied by all
threads.
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Memory Access Tips

m Coalesce access to global memory.

- See section 3.2.1 about “Coalesced Access to Global Memory” of
the “CUDA C Best Practices Guide” for more information.

- Rules for coalescing memory accesses are dependent on
compute capability

- Memory access alignment is critical for maximum performance
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Computational Bandwidth — FFT
Benchmarks
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Computational Bandwidth — FFT

Benchmarks
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Computational Bandwidth
/0 Versus Computation Bound

m Consider a CUDA Magnitude

__global___ void MaglDKernel(const float2 *in, float *out)

{

/I Determine my thread ID
const unsigned int myX = (blockldx.x * blockDim.x) + threadldx.x;

/I Fetch one complex sample from global memory
float2 data = in [ myX ];

/I Calculate the magnitude of the complex value and store
out [ myX ] = sgrtf((data.x * data.x) + (data.y * data.y));

= Is this kernel compute or IO bound?
- Assume a GPU with 192GB/s global memory bandwidth.
- Assume kernel attains the maximum bandwidth
+ accessing memory in a coalesced fashion
- data properly aligned.
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Computational Bandwidth
/O Versus Computation Bound

m Is this kernel compute or 10 bound?

- Depends on the number of threads launched to make sure we
cover global memory read/write latency.

m Now assume launch with 512 threads. Is this kernel compute or
IO bound?

m How to determine.

- Run a test program with multiple launches of this kernel and one
of the several performance measurement tools that NVidia
provides and get a measure of average performance.

- Modify the kernel and add extra computation burden.

- Be careful, the compiler is very smart about common sub
expression reductions, unnecessary memory accesses, etc.

- Rerun and measure average performance.

) . . ’
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Computational Bandwidth
/O Versus Computation Bound

m Observation —added 25 additional operations before the run
time increased.

- Caveat: heavily memory alignment and hardware (compute
capability) dependent

m Discovery — We estimate that 60% of our kernels are I/O bound.

- Examples of not complex enough to become compute bound:
- Applying a phase correction
-+ window functions,
- antenna amplitude corrections

- Any extra computations that can be added until the kernel
becomes compute bound are FREE!
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Computational Bandwidth

Sgu— Think Big

m Consider applying a range dependent antenna amplitude

correction to an image. A scalar vector multiply.

m cuBlas has a scalar vector multiply function.

[N I N O
[ I N O

*1.04
*1.03
*1.02
*1.01
*1.00




Computational Bandwidth
Think Big

m Lesson Learned: Launch 1 large user defined function versus
many cuBlas function calls.

- Hardware supports 4 or more concurrent kernel launches.

- Today’s CUDA provides asynchronous kernel launches with
streams, but the kernel launch still has some small overhead.

- Assume 2-5uS per kernel launch and for an image with 4000
range lines = 8-20mS of wasted time.

m Lesson Learned: Launch kernels with as many threads as
possible.
- 5 years ago, the 8800 GTX had 128 cores. 5 years later, we have
1536 cores available.
- GTX 680 can have over 20,000 concurrent threads with HW
context switching.

- Take advantage of conditional compilation or
cudaGetDeviceProperties() to scale over time.

() - . :
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NVidia Accelerator Technology - Resampling

m Azimuth resampling

|

m Resample techniques

- Chirp Z

- Sinc Interpolation

- Others
m Order of preference for speed: CPU

- Chirp Z, Sinc (hand coded SSE implementation), Others
m Order of preference for speed: GPU (2k x 2k)

- Sinc 8mS, Chirp Z 50mS, Others

m Lesson Learned — just because a method is the fastest on the
CPU does not mean it will be fastest on NVidia GPUs

() - . :
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NVidia Accelerator Technology — Resampling

m Methods of performing Sinc interpolations (CPU)
- Calculate sin(x)/x for each zero crossing — slow, most precise

- Table driven- fastest, precision good enough
+ lookup nearest neighbor
- Linear interpolation between table points

m Methods of performing Sinc interpolations (GPU)

- Table driven- slow, precision good enough
+ lookup nearest neighbor
- Linear interpolation between table points

- Calculate sin(x)/x for each zero crossing — fast, most precise
- Calculate sin(x)/x with fast math — fastest, better than table

m Lesson Learned — parallel transcendental functions are faster
than table lookup (even when using templates, which are
cached)

() - . :
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NVidia Accelerator Technology - Correlation

m Correlation
- CPU serial pseudo code

foreach grid location in x
foreach grid location in 'y
Correlation(image#1(X, y, boxsize), image#2(Xx, y, boxsize))
nexty
next x

: FFT
Subimage 1 | — - | SUBIMAGE 1

::z::>9 RESULT |F1, [ Result
FFT

Subimage2 | — s | SUBIMAGE 2

= GPU underutilized
- Small correlation areas of 64 x 64 pixels or less
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NVidia Accelerator Technology - Correlation

m Pseudo Code

foreach grid location in x
foreach grid location in y
listOfGridPoints += X, y
nexty
next x
Correlation(image#1(listOfGridPoints, boxsize), image#2(listOfGridPoints , boxsize))

FFT ST |

A A AN A

L - |
: —_—>
L Subimage 1 SUBIMAGE 1

i _
—  EFT ————— | RESULT Result

L Subimage 2 5 SUBIMAGE 2

m Lesson Learned: Increase compute density by increasing
parallelism.

- In this case, at the expense of much more memory!
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NVidia Accelerator Technology —
Back Projection

m Resampling Choices Effect Memory Access Patterns

- Use of zero padded FFTs. Nearest neighbor data access.
Threads may not read consecutive memory, ie coalesced memory
locations.

+ Use cached memory, textures, L1 cache, etc

- Interpolation filters such as windowed sinc, etc. Highly
overlapped memory access patterns.

+ Use shared memory
m Textures

- See section 5.3.2.5 “Texture and Surface Memory” in the “CUDA
C Programming Guide” for additional information.

- Optimized for 2D spatial locality.

- Cached, but note from “C Programming Guide”, a cache hit
reduces DRAM bandwidth demand but not fetch latency.

- Can not access double precision data types!
- Maximum dimension sizes for 1D textures may cause limitations.

() - . :
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NVidia Accelerator Technology —
Back Projection

m Double Precision

- Polar format, Overlapped Subaperture, Coherent Change
Detection. Data path analysis has shown single precision works
well. Precision issues can arise if sums of data are necessary
(GMTI).

- Back Projection. Double Precision is necessary for range
calculations. Your choice for all other calculations.

- See Portillo, R. “Power versus Performance Tradeoffs of GPU-
accelerated Backprojection-based Synthetic Aperture Radar
Image Formation”, SPIE 2011
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Nvidia Hardware Lines

m Consumer and Mobile - GeForce
- Cheap, available at local computer stores
- If it fails, upgrade to faster HW
- Perfect for learning CUDA and creating/debugging many kernels
- Little to no double precision support
- NVidia does not guarantee correctness of calculations
m Commercial - Quado Line
- Expensive! Nvidia guarantees replacements available for 3 yrs
- Double precision support available (dependent on version)
- NVidia does not guarantee correctness of calculations
m Scientific - Tesla Line
- Expensive! Nvidia guarantees replacements available for 3 yrs
- Double precision support available (dependent on version)

- NVidia guarantees correctness of calculations — clocked back to
insure

- 6 GB global memory available

) . . ’
(I Sandia National Laboratories



= Embedded products are available
- Curtiss-Wright - 1 generation of products
- GE - 2 generations of products




CUDA

m Register as a NVidia developer for early access to CUDA
releases and developer support.

m CUDA has been very stable over its lifetime!
- | have CUDA Beta Prerelease 0.2a — 4.2

- We have found one issue in 5 years of use. NVidia promptly
solved the problem.

m CUDA is updated on a 6 month schedule.
m Very proactive on adding new capabilities.
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