
Sandia National Laboratories is a multi-program laboratory managed and

operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

Lessons Learned Using NVidia GPUs

Within SAR Applications

SAR/GPU Workshop
April 18-20, 2012

Donald Small

Embedded Radar Processing Department

Sandia National Laboratories

SAND2012-3446 C
SAND2012-3446C

Presentation Outline

 Introduction

 SAR Applications

 History of CUDA and Sandia SAR Processing

 Important Issues While Porting Your Application To CUDA

 Examples Within SAR Applications

• Resampling

• Correlation

• Back Projection

• Double precision

 Available HW

 CUDA

Strategic National Security, Multi-Program Laboratory

Defense Systems & Assessments

International, Homeland,

and Nuclear Security
Energy, Climate, and Infrastructure

Security

Ground sensors

for future

combat systems

SAR

imagery
Missile defense

Small robotic

vehicle

Global Security
Homeland Defense &

Force Protection

Homeland Security

Nonproliferation

Infrastructure

Energy

supply

Critical Asset Protection

5

 Science & Technology Products

 Surveillance & Reconnaissance

 Integrated Military Systems

 Remote Sensing and Verification

 Information Operations

 Space Missions

 Proliferation Assessment

Defense Systems & Assessments Programs

6

Manned and Unmanned SAR

Real-time IFSAR  Science & Technology Products

 Surveillance & Reconnaissance

 Integrated Military Systems

 Remote Sensing and Verification

 Information Operations

 Space Missions

 Proliferation Assessment

Defense Systems & Assessments Programs

7

Sandia Technology Engaged in a Wide Variety of Missions

Antarctica Crevasse Detection in
support of NSF/NYANG (X-Band)

Multiple UAV or Manned
Applications

 Mini-RF Technology Demonstration

 (Sponsored by NASA/NAWC)

– Aided in location of subsurface water ice
deposits. Imaged entire lunar surface, including
high-resolution imagery of permanently-
shadowed regions. (S-Band)

– Space-qualified version of MiniSAR core HW used
in imaging system electronics

Lunar Reconnaissance
Orbiter Mission

Crevasse Detection

Real-time, 0.1m resolution
SAR on small UAVs

– Stripmap, spotlight, CCD
images downlinked in real
time to groundstation

Tijeras Arroyo Golf Course: 4-inch resolution, 3.3 km range, 20050519:PASS005

Real-Time Image

VideoSAR Mode

10

Traditional SAR vs. VideoSAR

Traditional SAR

– phase histories are only collected during real-time apertures

– time between images = time to collect real-time aperture + time to
process image (many tens of seconds at long ranges)

– Moving targets disappear or smear, difficult to locate/track

time
VideoSAR
apertures

VideoSAR

– phase histories are collected continuously

– images are formed from overlapping sets of phase histories

– time between images is user selectable and is independent of aperture
length (0.1 to 0.3 seconds seems best)

– slow moving targets (< 15 mph) can often be observed/tracked

– Latency < 8 sec.

real-=time apertures

A rapid sequence of SAR images (> 1 Hz) can permit observation of target shadows

Real-Time Image

Eubank Gate, KAFB: 4-inch resolution, 3.3 km range, 20050519:PASS007

12

Video SAR
(Movie Clip)

History of CUDA and Sandia SAR Processing

 Polar Format

 Start January 2007.

• Two man months for conversion of major portions of algorithm.

• Proof of concept for new development program.

• Three man months for all functions.

 Includes range/azimuth window application, range and azimuth

compression, multiple corrections, azimuth interpolations and

phase gradient autofocus.

• Performance

 2k x 2k image

 1.8GHz Intel Zeon 4.5 Seconds

 8800 GTX (128 cores) 150 mS

 Speedup 30X

History of CUDA and Sandia SAR Processing

 Overlap Subaperture Polar Format, VideoSar

 Overlap Subaperature Polar Format – Designed for embedded

multiprocessors with distributed memory systems. Includes

many additional corrections such as antenna pattern

correction, digital receiver filter corrections, range curvature

corrections, etc.

• Started September 2007

 VideoSar – design requirement 1k x 1k image @ 5 FPS, goal of

1k x 1k image @ 10 FPS.

• C1060 (240 cores) – 1k x 1k image @ 14 FPS

• C1060 (240 cores) – 2k x 2k image @ 3 FPS

History of CUDA and Sandia SAR Processing

 Coherent Change Detection

 6 man months to convert to GPU.

• Much of which was parallelizing the tie point correlation function.

• Performance

 3k x 5k pair of images.

 Quadro 5010M (348 cores) 700 mS

History of CUDA and Sandia SAR Processing

 Back Projection

 Developed directly for GPU. No autofocus at this time. Digital

Elevation Map input, non rotating coordinate frame.

 Performance 2k x 2k image

• Quadro FX 3600 (128 cores) 4 Seconds

 VideoSar Backprojection

• Quadro FX 3600 (128 cores) 250mS or 4 FPS

Important Issues While Porting To CUDA

 Memory Bandwidth Host to Device

 Most if not all Nvidia GPUs are PCIe x16 (16 bidirectional lanes)

of data.

PCIe version Theoretical Measured

1.0 4 GB/s 2.5 - 3.5 GB/s

2.0 8 GB/s 5.0 – 7 GB/s

3.0 16 GB/s Unknown

 GPU compute capability 1.0 had ability to transfer data in a

single direction at a time

 GPU compute capability 2.0 has ability to transfer data

bidirectional (as well as run a kernel) concurrently

Important Issues While Porting To CUDA

 Memory Bandwidth Host to Device

 The best case theoretical data transfer rate from host to GPU is

32GB/s (PCIe v3.0), only 1/6 the theoretical data rate of best

case global memory to cores (192 GB/s)!

• PCIe v2.0 has had a run of almost 5 years starting at 1/11 (GTX

8800) and performing as poorly as 1/20 (GTX 285) before Fermi

class GPUs gave us bidirectional data transfer which only reset

the ratio.

• And this ratio will only get worse until PCIe v4.0 is accepted.

0

5

10

15

20

25

2006 2007 2008 2009 2010 2011 2012

Consumer

Compute

Tesla Fermi

Kepler

Important Issues While Porting To CUDA

 Memory Bandwidth Host to Device

 What does this mean?

• Perform serial processes on CPU, parallel processes on GPU!

• Reduce Host->Device or Device->Host transfers

• Don’t transfer small chunks of data, combine into largest possible

structure for data transfer.

• Use bidirectional transfer of data and concurrent kernel

invocation.

• Once the data is on the GPU, keep it there.

 Example: Phase Gradient Autofocus (PGA)

 Much of PGA is parallel, until all of the phase errors are collapsed

into a single vector.

 Ratio of CPU vs GPU processing time ~ 1.0

Important Issues While Porting To CUDA

 Memory Bandwidth Global Memory

 What is it?

• Large bulk storage for data. 768 MB (8800 GTX) to 6 GB (M2070,

M2090)

• Fast – originally 84.6 GB/s now reaching 192 GB/s

• Latency from kernel request to register is 600 – 800 cycles.

 If blocks are created with enough free resources (see Nvidia

occupancy calculator), GPU H/W will context switch up to 1536

threads per multiprocessor to hide latency

• Accessible from all threads at all times.

 Must be careful about multiple threads writing to common

locations. GPU does not guarantee that thread 0 runs before

thread N outside of a WARP.

• See section 2.2 about “Bandwidth” in the “CUDA C Best Practices

Guide” to learn more about theoretical and effective bandwidth

calculations.

Important Issues While Porting To CUDA

 Memory Bandwidth Shared Memory

• Small storage area

• Very Fast – 1 clock cycle, if you follow all of the rules!

• Accessible from all threads within a thread block.

• Not persistent after thread block completes.

• Great for small data arrays of common use to all threads within a

thread block.

• May be treated as a user managed high speed cache.

• Example

 A range dependent phase term needs to be applied to all phase

history data. The phase term may be calculated by one thread,

saved to shared memory and finally read and applied by all

threads.

 Memory Access Tips

 Coalesce access to global memory.

• See section 3.2.1 about “Coalesced Access to Global Memory” of

the “CUDA C Best Practices Guide” for more information.

• Rules for coalescing memory accesses are dependent on

compute capability

• Memory access alignment is critical for maximum performance

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Ef
fe

ct
iv

e
 B

an
d

w
it

d
h

 (
G

B
/s

)

Offset

Copy with Offset Tesla M2090

Caching

Non-caching

Computational Bandwidth – FFT

Benchmarks

0

100000

200000

300000

400000

500000

600000

M ops

fft size

Single Precision Powers Of Two

Cell out of place

3.0 Ghz Xeon Core Duo Out
of Place
8800 GTX SC Out of place

9800 GX2 SC Out place v2.3

GT 240 Outplace Cuda3.2

GTX 280 SC Out place v2.0

GTX 480 Outplace Cuda 3.0

GTX 480 SC Out place v3.2

GTX 580 Ouplace V3.2

Computational Bandwidth – FFT

Benchmarks

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

T
im

e
/f

ft

fft size
Single Precision Powers Of Two

GT 240 Inplace Cuda 3.2

GTX 480 SC In place v3.2

Tesla M2050 Inplace V3.2

Intel 2.67GHz 1 core

Intel 2.67GHz 12 core

GTX 580 Inplace V3.2

Computational Bandwidth

I/O Versus Computation Bound

 Consider a CUDA Magnitude

__global__ void Mag1DKernel(const float2 *in, float *out)

{

 // Determine my thread ID

 const unsigned int myX = (blockIdx.x * blockDim.x) + threadIdx.x;

 // Fetch one complex sample from global memory

 float2 data = in [myX];

 // Calculate the magnitude of the complex value and store

 out [myX] = sqrtf((data.x * data.x) + (data.y * data.y));

}

 Is this kernel compute or IO bound?

• Assume a GPU with 192GB/s global memory bandwidth.

• Assume kernel attains the maximum bandwidth

 accessing memory in a coalesced fashion

 data properly aligned.

Computational Bandwidth

I/O Versus Computation Bound

 Is this kernel compute or IO bound?

• Depends on the number of threads launched to make sure we

cover global memory read/write latency.

 Now assume launch with 512 threads. Is this kernel compute or

IO bound?

 How to determine.

• Run a test program with multiple launches of this kernel and one

of the several performance measurement tools that NVidia

provides and get a measure of average performance.

• Modify the kernel and add extra computation burden.

 Be careful, the compiler is very smart about common sub

expression reductions, unnecessary memory accesses, etc.

• Rerun and measure average performance.

Computational Bandwidth

I/O Versus Computation Bound

 Observation – added 25 additional operations before the run

time increased.

• Caveat: heavily memory alignment and hardware (compute

capability) dependent

 Discovery – We estimate that 60% of our kernels are I/O bound.

• Examples of not complex enough to become compute bound:

 Applying a phase correction

 window functions,

 antenna amplitude corrections

• Any extra computations that can be added until the kernel

becomes compute bound are FREE!

Computational Bandwidth

Think Big

 Consider applying a range dependent antenna amplitude

correction to an image. A scalar vector multiply.

* 1.05

* 1.04

* 1.03

* 1.02

* 1.01

* 1.00

 cuBlas has a scalar vector multiply function.

Computational Bandwidth

Think Big

 Lesson Learned: Launch 1 large user defined function versus

many cuBlas function calls.

• Hardware supports 4 or more concurrent kernel launches.

• Today’s CUDA provides asynchronous kernel launches with

streams, but the kernel launch still has some small overhead.

• Assume 2-5uS per kernel launch and for an image with 4000

range lines = 8-20mS of wasted time.

 Lesson Learned: Launch kernels with as many threads as

possible.

• 5 years ago, the 8800 GTX had 128 cores. 5 years later, we have

1536 cores available.

• GTX 680 can have over 20,000 concurrent threads with HW

context switching.

• Take advantage of conditional compilation or

cudaGetDeviceProperties() to scale over time.

NVidia Accelerator Technology - Resampling

 Azimuth resampling

 Resample techniques

• Chirp Z

• Sinc Interpolation

• Others

 Order of preference for speed: CPU

• Chirp Z, Sinc (hand coded SSE implementation), Others

 Order of preference for speed: GPU (2k x 2k)

• Sinc 8mS, Chirp Z 50mS, Others

 Lesson Learned – just because a method is the fastest on the

CPU does not mean it will be fastest on NVidia GPUs

NVidia Accelerator Technology – Resampling

 Methods of performing Sinc interpolations (CPU)

• Calculate sin(x)/x for each zero crossing – slow, most precise

• Table driven- fastest, precision good enough

 lookup nearest neighbor

 Linear interpolation between table points

 Methods of performing Sinc interpolations (GPU)

• Table driven- slow, precision good enough

 lookup nearest neighbor

 Linear interpolation between table points

• Calculate sin(x)/x for each zero crossing – fast, most precise

• Calculate sin(x)/x with fast math – fastest, better than table

 Lesson Learned – parallel transcendental functions are faster

than table lookup (even when using templates, which are

cached)

NVidia Accelerator Technology - Correlation

 Correlation

• CPU serial pseudo code

foreach grid location in x

 foreach grid location in y

 Correlation(image#1(x, y, boxsize), image#2(x, y, boxsize))

 next y

next x

 GPU underutilized

• Small correlation areas of 64 x 64 pixels or less

Subimage 1

Subimage 2

FFT

FFT

SUBIMAGE 1

SUBIMAGE 2

X RESULT
IFFT

Result

NVidia Accelerator Technology - Correlation

 Pseudo Code

foreach grid location in x

 foreach grid location in y

 listOfGridPoints += x, y

 next y

next x

Correlation(image#1(listOfGridPoints, boxsize), image#2(listOfGridPoints , boxsize))

Subimage 1

Subimage 2

FFT

FFT

SUBIMAGE 1

SUBIMAGE 2

X RESULT
IFFT

Result
RESULT Result

SUBIMAGE 1

SUBIMAGE 2

Subimage 1

Subimage 2

 Lesson Learned: Increase compute density by increasing

parallelism.

• In this case, at the expense of much more memory!

NVidia Accelerator Technology –

 Back Projection

 Resampling Choices Effect Memory Access Patterns

• Use of zero padded FFTs. Nearest neighbor data access.

Threads may not read consecutive memory, ie coalesced memory

locations.

 Use cached memory, textures, L1 cache, etc

• Interpolation filters such as windowed sinc, etc. Highly

overlapped memory access patterns.

 Use shared memory

 Textures

• See section 5.3.2.5 “Texture and Surface Memory” in the “CUDA

C Programming Guide” for additional information.

• Optimized for 2D spatial locality.

• Cached, but note from “C Programming Guide”, a cache hit

reduces DRAM bandwidth demand but not fetch latency.

• Can not access double precision data types!

• Maximum dimension sizes for 1D textures may cause limitations.

NVidia Accelerator Technology –

 Back Projection

 Double Precision

• Polar format, Overlapped Subaperture, Coherent Change

Detection. Data path analysis has shown single precision works

well. Precision issues can arise if sums of data are necessary

(GMTI).

• Back Projection. Double Precision is necessary for range

calculations. Your choice for all other calculations.

• See Portillo, R. “Power versus Performance Tradeoffs of GPU-

accelerated Backprojection-based Synthetic Aperture Radar

Image Formation”, SPIE 2011

Nvidia Hardware Lines

 Consumer and Mobile - GeForce

• Cheap, available at local computer stores

• If it fails, upgrade to faster HW

• Perfect for learning CUDA and creating/debugging many kernels

• Little to no double precision support

• NVidia does not guarantee correctness of calculations

 Commercial - Quado Line

• Expensive! Nvidia guarantees replacements available for 3 yrs

• Double precision support available (dependent on version)

• NVidia does not guarantee correctness of calculations

 Scientific - Tesla Line

• Expensive! Nvidia guarantees replacements available for 3 yrs

• Double precision support available (dependent on version)

• NVidia guarantees correctness of calculations – clocked back to

insure

• 6 GB global memory available

Nvidia Hardware Lines

 Embedded products are available

• Curtiss-Wright - 1 generation of products

• GE - 2 generations of products

CUDA

 Register as a NVidia developer for early access to CUDA

releases and developer support.

 CUDA has been very stable over its lifetime!

• I have CUDA Beta Prerelease 0.2a – 4.2

• We have found one issue in 5 years of use. NVidia promptly

solved the problem.

 CUDA is updated on a 6 month schedule.

 Very proactive on adding new capabilities.

