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 Science & Technology Products 
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Sandia Technology Engaged in a Wide Variety of Missions 

Antarctica Crevasse Detection in 
support of NSF/NYANG (X-Band)  

Multiple UAV or Manned 
Applications  

     Mini-RF Technology Demonstration 

     (Sponsored by NASA/NAWC) 

– Aided in location of subsurface water ice 
deposits.  Imaged entire lunar surface, including 
high-resolution imagery of permanently-
shadowed regions. (S-Band) 

– Space-qualified version of MiniSAR core HW used 
in imaging system electronics 

Lunar Reconnaissance 
Orbiter Mission 

Crevasse Detection 

Real-time, 0.1m resolution 
SAR on small UAVs 

– Stripmap, spotlight, CCD 
images downlinked in real 
time to groundstation 



Tijeras Arroyo Golf Course:  4-inch resolution, 3.3 km range, 20050519:PASS005 

Real-Time Image 



VideoSAR Mode 
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Traditional SAR vs. VideoSAR 

Traditional SAR 

– phase histories are only collected during real-time apertures 

– time between images = time to collect real-time aperture + time to 
process image (many tens of seconds at long ranges) 

– Moving targets disappear or smear, difficult to locate/track 

 

time
VideoSAR
apertures

VideoSAR 

– phase histories are collected continuously 

– images are formed from overlapping sets of phase histories 

– time between images is user selectable and is independent of aperture 
length (0.1 to 0.3 seconds seems best) 

– slow moving targets (< 15 mph) can often be observed/tracked 

– Latency < 8 sec. 

 

 

real-=time apertures

A rapid sequence of SAR images (> 1 Hz) can permit observation of target shadows 



Real-Time Image 

Eubank Gate, KAFB:  4-inch resolution, 3.3 km range, 20050519:PASS007 



12 

Video SAR 
(Movie Clip) 



History of CUDA and Sandia SAR Processing 

      Polar Format 

 Start January 2007.   

• Two man months for conversion of major portions of algorithm.   

• Proof of concept for new development program.   

• Three man months for all functions.   

 Includes range/azimuth window application, range and azimuth 

compression, multiple corrections, azimuth interpolations and 

phase gradient autofocus.  

• Performance   

 2k  x 2k image 

 1.8GHz Intel Zeon  4.5 Seconds 

 8800 GTX (128 cores)  150 mS 

 Speedup 30X 



History of CUDA and Sandia SAR Processing 

  Overlap Subaperture Polar Format, VideoSar 

 Overlap Subaperature Polar Format – Designed for  embedded 

multiprocessors with distributed memory systems. Includes 

many additional corrections such as antenna pattern 

correction, digital receiver filter corrections, range curvature 

corrections, etc. 

• Started September 2007 

 

 VideoSar – design requirement 1k x 1k image @ 5 FPS, goal of 

1k x 1k image @ 10 FPS. 

• C1060 (240 cores) – 1k x 1k image @ 14 FPS 

• C1060 (240 cores) – 2k x 2k image @  3 FPS 

 

 



History of CUDA and Sandia SAR Processing 

 Coherent Change Detection 

 6 man months to convert to GPU.   

• Much of which was parallelizing the tie point correlation function. 

• Performance 

 3k x 5k pair of images. 

 Quadro 5010M (348 cores)   700 mS 

 

 



History of CUDA and Sandia SAR Processing 

   Back Projection 

 
 Developed directly for GPU.  No autofocus at this time.  Digital 

Elevation Map input, non rotating coordinate frame. 

 Performance 2k x 2k image 

• Quadro FX 3600 (128 cores)  4 Seconds 

 VideoSar Backprojection 

• Quadro FX 3600 (128 cores)    250mS or 4 FPS 

 



Important Issues While Porting To CUDA 

    Memory Bandwidth Host to Device 

 
 Most if not all Nvidia GPUs are PCIe x16 (16 bidirectional lanes) 

of data.     

PCIe version Theoretical  Measured 

1.0 4 GB/s 2.5 - 3.5 GB/s 

2.0 8 GB/s 5.0 – 7 GB/s 

3.0 16 GB/s Unknown 

 GPU compute capability 1.0 had ability to transfer data in a 

single direction at a time 

 GPU compute capability 2.0 has ability to transfer data 

bidirectional (as well as run a kernel) concurrently 

  



Important Issues While Porting To CUDA 

    Memory Bandwidth Host to Device 

 The best case theoretical data transfer rate from host to GPU is 

32GB/s (PCIe v3.0),  only 1/6 the theoretical data rate of best 

case global memory to cores (192 GB/s)! 

• PCIe v2.0 has had a run of almost 5 years starting at 1/11 (GTX 

8800) and performing as poorly as 1/20 (GTX 285) before Fermi 

class GPUs gave us bidirectional data transfer which only reset 

the ratio. 

• And this ratio will only get worse until PCIe v4.0 is accepted. 
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Important Issues While Porting To CUDA 

    Memory Bandwidth Host to Device 

 What does this mean? 

• Perform serial processes on CPU, parallel processes on GPU! 

• Reduce Host->Device or Device->Host transfers 

• Don’t transfer small chunks of data, combine into largest possible 

structure for data transfer. 

• Use bidirectional transfer of data and concurrent kernel 

invocation. 

• Once the data is on the GPU, keep it there. 

 Example:  Phase Gradient Autofocus (PGA) 

 Much of PGA is parallel, until all of the phase errors are collapsed 

into a single vector. 

 Ratio of CPU vs GPU processing time ~ 1.0 



Important Issues While Porting To CUDA 

    Memory Bandwidth Global Memory 

 What is it? 

• Large bulk storage for data. 768 MB (8800 GTX) to 6 GB (M2070, 

M2090) 

• Fast – originally 84.6 GB/s now reaching 192 GB/s 

• Latency from kernel request to register is 600 – 800 cycles. 

 If blocks are created with enough free resources (see Nvidia 

occupancy calculator), GPU H/W will context switch up to 1536 

threads per multiprocessor to hide latency 

• Accessible from all threads at all times.   

 Must be careful about multiple threads writing to common 

locations.  GPU does not guarantee that thread 0 runs before 

thread N outside of a WARP. 

• See section 2.2 about “Bandwidth” in the “CUDA C Best Practices 

Guide” to learn more about theoretical and effective bandwidth 

calculations. 

 



Important Issues While Porting To CUDA 

    Memory Bandwidth Shared Memory 

• Small storage area 

• Very Fast – 1 clock cycle, if you follow all of the rules! 

• Accessible from all threads within a thread block.   

• Not persistent after thread block completes. 

• Great for small data arrays of common use to all threads within a 

thread block. 

• May be treated as a user managed high speed cache. 

• Example 

 A range dependent phase term needs to be applied to all phase 

history data.  The phase term may be calculated by one thread, 

saved to shared memory and finally read and applied by all 

threads.   



     Memory Access Tips 

 Coalesce access to global memory. 

• See section 3.2.1 about “Coalesced Access to Global Memory” of 

the “CUDA C Best Practices Guide” for more information. 

• Rules for coalescing memory accesses are dependent on 

compute capability 

• Memory access alignment is critical for maximum performance 
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Computational Bandwidth – FFT 

Benchmarks 
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Computational Bandwidth – FFT 

Benchmarks 
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Computational Bandwidth 

I/O Versus Computation Bound 

 Consider a CUDA Magnitude 

__global__ void  Mag1DKernel(const float2 *in, float *out) 

{ 

    //  Determine my thread ID 

    const unsigned int myX = (blockIdx.x * blockDim.x) + threadIdx.x; 

 

    //  Fetch one complex sample from global memory 

    float2 data = in [ myX ]; 

 

    //  Calculate the magnitude of the complex value and store 

    out [ myX  ] = sqrtf((data.x * data.x) + (data.y * data.y)); 

}  

 Is this kernel compute or IO bound?   

• Assume a GPU with 192GB/s global memory bandwidth. 

• Assume kernel attains the maximum bandwidth 

 accessing memory in a coalesced fashion  

 data properly aligned. 



Computational Bandwidth 

I/O Versus Computation Bound 

 Is this kernel compute or IO bound? 

• Depends on the number of threads launched to make sure we 

cover global memory read/write latency. 

 Now assume launch with 512 threads.  Is this kernel compute or 

IO bound? 

 

 How to determine. 

• Run a test program with multiple launches of this kernel and one 

of the several performance measurement tools that NVidia 

provides and get a measure of average performance. 

• Modify the kernel and add extra computation burden.   

 Be careful, the compiler is very smart about common sub 

expression reductions, unnecessary memory accesses, etc. 

• Rerun and measure average performance. 

 

 



Computational Bandwidth 

I/O Versus Computation Bound 

 Observation – added 25 additional operations before the run 

time increased. 

• Caveat: heavily memory alignment and hardware (compute 

capability) dependent 

 

 Discovery – We estimate that 60% of our kernels are I/O bound. 

• Examples of not complex enough to become compute bound:  

 Applying a phase correction 

 window functions,  

 antenna amplitude corrections 

• Any extra computations that can be added until the kernel 

becomes compute bound are FREE! 



Computational Bandwidth 

Think Big 

 Consider applying a range dependent antenna amplitude 

correction to an image.  A scalar vector multiply. 

* 1.05 

* 1.04 

* 1.03 

* 1.02 

* 1.01 

* 1.00 

 cuBlas has a scalar vector multiply function. 



Computational Bandwidth 

Think Big 

 Lesson Learned: Launch 1 large user defined function versus 

many cuBlas function calls. 

• Hardware supports 4 or more concurrent kernel launches. 

• Today’s CUDA provides asynchronous kernel launches with 

streams, but the kernel launch still has some small overhead. 

• Assume 2-5uS per kernel launch and for an image with 4000 

range lines = 8-20mS of wasted time. 

 

 Lesson Learned: Launch kernels with as many threads as 

possible. 

• 5 years ago, the 8800 GTX had 128 cores.  5 years later, we have 

1536 cores available.   

• GTX 680 can have over 20,000 concurrent threads with HW 

context switching. 

• Take advantage of conditional compilation or 

cudaGetDeviceProperties() to scale over time. 



NVidia Accelerator Technology - Resampling 

 Azimuth resampling 

 Resample techniques 

• Chirp Z 

• Sinc Interpolation 

• Others 

 Order of preference for speed: CPU 

• Chirp Z, Sinc (hand coded SSE implementation), Others 

 Order of preference for speed: GPU (2k x 2k) 

• Sinc 8mS, Chirp Z 50mS, Others 

 

 Lesson Learned – just because a method is the fastest on the 

CPU does not mean it will be fastest on NVidia GPUs 

 



NVidia Accelerator Technology – Resampling 

 Methods of performing Sinc interpolations (CPU) 

• Calculate sin(x)/x for each zero crossing – slow, most precise 

• Table driven- fastest, precision good enough 

 lookup nearest neighbor 

 Linear interpolation between table points 

 

 Methods of performing Sinc interpolations (GPU) 

• Table driven- slow, precision good enough 

 lookup nearest neighbor 

 Linear interpolation between table points 

• Calculate sin(x)/x for each zero crossing – fast, most precise 

• Calculate sin(x)/x with fast math – fastest, better than table 

 

 Lesson Learned – parallel transcendental functions are faster 

than table lookup (even when using templates, which are 

cached) 

 



NVidia Accelerator Technology - Correlation 

 Correlation 

• CPU serial pseudo code 

foreach grid location in x 

        foreach grid location in y  

                Correlation(image#1(x, y, boxsize), image#2(x, y, boxsize)) 

        next y 

next x 

 GPU underutilized 

• Small correlation areas of 64 x 64 pixels or less 

Subimage 1 

Subimage 2 

FFT 

FFT 

SUBIMAGE 1 

SUBIMAGE 2 

X RESULT 
IFFT 

Result 



NVidia Accelerator Technology - Correlation 

 Pseudo Code 

foreach grid location in x 

        foreach grid location in y  

                listOfGridPoints += x, y 

        next y 

next x 

Correlation(image#1(listOfGridPoints, boxsize), image#2(listOfGridPoints , boxsize)) 

Subimage 1 

Subimage 2 

FFT 

FFT 

SUBIMAGE 1 

SUBIMAGE 2 

X RESULT 
IFFT 

Result 
RESULT Result 

SUBIMAGE 1 

SUBIMAGE 2 

Subimage 1 

Subimage 2 

 Lesson Learned: Increase compute density by increasing 

parallelism. 

• In this case, at the expense of much more memory! 



NVidia Accelerator Technology –  

     Back Projection 

 Resampling Choices Effect Memory Access Patterns 

• Use of zero padded FFTs.  Nearest neighbor data access. 

Threads may not read consecutive memory, ie coalesced memory 

locations. 

 Use cached memory, textures, L1 cache, etc 

• Interpolation filters such as windowed sinc, etc.  Highly 

overlapped memory access patterns. 

 Use shared memory 

 Textures 

• See section 5.3.2.5 “Texture and Surface Memory” in the “CUDA 

C Programming Guide” for additional information. 

• Optimized for 2D spatial locality. 

• Cached, but note from “C Programming Guide”, a cache hit 

reduces DRAM bandwidth demand but not fetch latency. 

• Can not access double precision data types! 

• Maximum dimension sizes for 1D textures may cause limitations. 

 



NVidia Accelerator Technology –  

     Back Projection 

 Double Precision 

• Polar format, Overlapped Subaperture, Coherent Change 

Detection.  Data path analysis has shown single precision works 

well.  Precision issues can arise if sums of data are necessary 

(GMTI). 

• Back Projection.  Double Precision is necessary for range 

calculations.  Your choice for all other calculations. 

• See Portillo, R.  “Power versus Performance Tradeoffs of GPU-

accelerated Backprojection-based Synthetic Aperture Radar 

Image Formation”, SPIE 2011 



Nvidia Hardware Lines 

 Consumer and Mobile - GeForce 

• Cheap, available at local computer stores 

• If it fails, upgrade to faster HW 

• Perfect for learning CUDA and creating/debugging many kernels 

• Little to no double precision support 

• NVidia does not guarantee correctness of calculations 

 Commercial - Quado Line 

• Expensive! Nvidia guarantees replacements available for 3 yrs 

• Double precision support available (dependent on version) 

• NVidia does not guarantee correctness of calculations 

 Scientific - Tesla Line  

• Expensive! Nvidia guarantees replacements available for 3 yrs 

• Double precision support available (dependent on version) 

• NVidia guarantees correctness of calculations – clocked back to 

insure 

• 6 GB global memory available 



Nvidia Hardware Lines 

 Embedded products are available 

• Curtiss-Wright - 1 generation of products 

• GE  - 2 generations of products 



CUDA 

 Register as a NVidia developer for early access to CUDA 

releases and developer support. 

 CUDA has been very stable over its lifetime! 

• I have CUDA Beta Prerelease 0.2a – 4.2  

• We have found one issue in 5 years of use.  NVidia promptly 

solved the problem. 

 CUDA is updated on a 6 month schedule. 

 Very proactive on adding new capabilities. 


