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Problem statement 

• Aim: Develop a technique to estimate anthropogenic CO2 

emissions from sparse observations 

• Motivations:  

– An alternative to estimating CO2 emission using bottom-up 

(economic model) techniques 

– Can provide independent verification in case of CO2 abatement 

treaties 

• How is it done? 

– Measure CO2 concentrations in flasks at measurement sites; also 

column-averaged satellite measurements 

– Use an atmospheric transport model to invert for source locations 



Technical challenges 

• Atmospheric transport model - largest source of uncertainty 

• Limited measurements - second-largest contribution to 

uncertainty 

• Spatial models for anthropogenic CO2 

– Non-stationary distribution in space 

– No spatial models exist to date – but need one is emissions are to be 

estimated from sparse observations 

– Impact of choice of spatial model on emission estimates? 

• Discriminating between anthropogenic and biogenic CO2 

(biogenic is 10x larger) 

– But anthropogenic and biogenic CO2 and different (and known) 

proportions of 12CO2 and 14CO2 



Differences in spatial characteristics 

• Biogenic CO2 fluxes:  

– Smoothly variable in space 

– Modeled using multivariate Gaussian 

– Separate correlation lengths over 

land and oceans 

• Anthropogenic (fossil fuel) 

emissions 

• Currently, only bottom-up estimates 

exist  

• A few databases – Vulcan (US-only, 

2002); EDGAR (world) 

• Gaussian process will probably not 

work 

• What non-stationary covariance 

model to use? 

 

Biogenic emissions: Mueller et al, JGR, 2008 

Anthropogenic emissions: Gurney et 

al, EST, 2009 



Outline of the talk 

• Choosing a spatial model 

– Our hypothesis: wavelets 

– Study spatial and temporal characteristic of CO2 emissions 

• Use Vulcan as source of emissions 

– Search for a good wavelet model - and what makes it good 

• Demonstrate the spatial model in an OSS (observing system 

simulation) 

– Estimate CO2 emissions from synthetic CO2 observations 

– Using Ensemble Kalman Filters  

• Can handle large number of unknowns; estimates uncertainty in them 

– Using sparsity-enforcing methods used in compressive-sensing 

• If a parameter makes no difference to outputs, identifies and zeros it out 



How does one represent emissions with wavelets? 

• Propose 

 

– fs,l(x) is a wavelet basis; s, l are its 

scale and location indices 

– ws,l are weights 

• So what are wavelets? 

– Basis set with compact support 

– Belong to different families  

– Within a family, can have different 

orders (high order ~ smoother) 

– One chooses a family and an order, 

to expand E(x) 

– The expansion consists of varying  

• s, to get different frequency content 

• l, to shift in space (location) 
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Posing the problem 

• An emission field on 2N x  2N pixels 

– Can be decomposed on a wavelet basis, N deep 

– Each level s has 2s x 2s – (2s-1 x 2s-1) weights 

• Emissions 

 

• Conjecture 

– ws,i,j are mostly zero (i.e., is sparse) 

– ws,i,j  and ws+1,i,j are correlated – parent-child relationship 

• Conjecture checked 

– Using CO2 emissions from Vulcan (SIAM GeoSc, 2011) 

– Checked Haars, Daubechies of different orders 

– Found that Haar wavelets provided the sparsest representation 

– Reconstruction error was also small 
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Dimensionality reduction 

• Nightlights are a good proxy for FF emissions 

– Except emissions from electricity generation and cement production 

– Nightlights easily observed – DoD’s DMSP-OLS 

• Use thresholded radiance-calibrated nightlights from 1997-98 to mask 

out unpopulated regions 

 



Random field model using nightlights 

• Threshold nightlights at radiance Rmin 

– Removes low-population regions of the US 

– Make a nightlight “mask” 

• Mask EDGAR fluxes (1o resolution; annual average for 2002)  

– Project to a Haar wavelet basis set & retain non-zero wavelet 

coefficients 

• Wavelet-based Random Field model  

–  With 635 coefficients (“mid-complexity”) 

– Remove wavelet coefficients at finest level too – 253 parameter 

model (“low” complexity) 

• Errors introduced by this approximation 

– We lost some emissions due to nightlight masking 

– We lost spatial fidelity due to coarsening 
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Emission reconstruction comparison 

 Lost 10% of total 

emissions due to masking 

 253 or 635 parameters 

may be still too many to 

estimate  

635 parameter model Original from Vulcan database 

253 parameter model 



Emission estimation problem  

• Use the 2 wavelet RF models to fit to synthetic CO2 

concentration data 

– Is the dimensionality of the model high enough? 

• Synthetic data generation 

– Choose location of 35 towers (NOAA’s network) 

– Use Vulcan emissions, coarsened to 1o resolution, to generate time-

dependent CO2 concentration “observations” 

• Concentration measurements at every 3 hours 

– Atmospheric transport simulated using WRF 

• Inverse problem is linear 

– y = H x, where y = CO2 concentrations; x = emissions over ~ 1 year 

• We estimate emissions averaged over 8-day periods (“Period”) 

– x = F w, where F = wavelet bases, w = basis weights 

– H constructed using WRF and 2008 wind fields 

 



Sparsity-enforced estimation 

• The observations may not be sufficient to estimate 253 (or 635) 

parameters per “Period” 

– Atmospheric transport is diffusive – destroys information 

– If RF model parameters w cannot be estimated, set to zero 

• Fitting procedure  

– Minimize || y – H F w||2 + ||w||1 

– Uses a greedy, orthogonal matching pursuit algorithm called StOMP 

(Donoho & Tsaig, 2006) 

• The basic idea is borrowed from compressive sensing 

– H is the “sampling” matrix, but is neither random, nor maximally 

incoherent with F, nor does it satisfy Restricted Isometry 

– But will prevent overfitting 

 

 

 



Estimated emissions 

• Reconstructions look similar for 

Period # 31 (~August 2008)  

• Mid-complexity model (635 

parameters) has more spatial fidelity 

– Significant, or just artifact? 

Vulcan emissions; coarsened to 1o 

Reconstruction; mid-complexity RF model 

Reconstruction; low-complexity RF model 



Predictive capacity 

• Predicted CO2 

concentrations at 2 

towers 

– Basically, not 

much difference 

between 2 RF 

models 

• Results shown for 

Period 31 

 

 



Did sparsification work? 

• In the mid-complexity 

model (635 

parameters), about 

57% of the 

parameters are set to 

zero 

• In the low-complexity, 

about 30% 

• Lesson learnt: Our 

RF models are still 

too high-dimensional 

– But perhaps we’re 

not over-fitting 



Accuracy of reconstruction 

• The mid-complexity RF 

model has lower errors 

– But the errors are 

uncomfortably high 

• Requirements 

– Need UQ of 

parameters 

– Need finer spatial 

resolution, but 

• With sparsity 

enforcement 

• More sensors would be 

nice 

 

Summer 



Estimating emission 

• Aim: Estimate emissions, given time-variant CO2 concentrations 

– Use a wavelet-based RF model 

– Quantify uncertainty in estimates 

– Use EnKF (scalable; also captures uncertainty in estimates) 

• Basically:  

– Can wavelet-based RF models be used in estimation with  UQ? 

– How large are the uncertainties if no model-reduction is done (CS or 

a priori) 

• Data – CO2 concentrations at sensor locations 

– Generated synthetically, using a transport model 

– Domain: Lower 48 states of USA (51.5N, -127.5W) to (23.5N, 

62.5W) 



Modeling and numerical details 

• Transport model: Simple advection-diffusion 

 

 

 

• Ensemble Kalman filters 

 

 

 

 

• Spatial models 

– Used Haars and Debauchies (order = 8) 

• c = concentration 

• v = velocity, 

• f = CO2 source  

• D = diffusion 

coefficient. 



Emission estimation (MAP estimates) 

• Emissions with Haars (wavelets on all levels) 

• 80x80 grid resolution; sensor grid = 10 x 10 



Emission reconstruction – impact of wavelet model 

Haar Daubechies 8 

RMSE = 1.44 RMSE = 1.61 



Conclusions 

• We have created a multiresolution random field (RF) model for 

CO2 emissions 

• RF model can be fitted to data by enforcing sparsity 

– No uncertainty quantified, by > 50% of the coefficients were 

identified and inactivated 

– The 35 sensors that we have can estimate anthropogenic emissions 

if it were an inert tracer 

• 20-30% errors are observed 

• But the sensors were placed for biospheric, not anthropogenic fluxes 

• Unknown when joint anthropogenic and biospheric inversion can be 

done 

• RF model also tested with EnKF, but with simplified transport 

– Both CO2 concentrations and sources can be estimated 



Questions? 

Questions? 


