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 Predictive Design of Z Experiments (Lemke) 
 

Two-sided Strip-line Flyer 
Plate Experiment 2D Simulation Plane of Two-sided Strip-line 

• Resistive magnetohydrodynamics. 
• Accurate electrical conductivities. 
• Accurate equation of state (EOS). 
• Circuit model for self-consistent coupling. 
• DAKOTA optimization loops. 
• Density functional theory and molecular 

dynamics (DFT-MD) computations are 
needed to accurately characterize material 
response. 
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Current Upscaling Practice and Our Goals 

• Experimental data and DFT-MD are important to develop 
accurate EOS and conductivity models. 

• Various uncertainties are managed by expert users using 
their experience and judgment. 

• UQ=Uncertainty Quantification 
– Epistemic Uncertainty = Reducible or model uncertainty 

may be improved with additional knowledge or data. 
– Aleatory Uncertainty = Irreducible Uncertainty 

• What are the practical requirements for an upscaling UQ 
technology for shock physics? 

– Evolutionary, well grounded, accessible and backward compatible 
“Probability is too important to be left to the experts.” – Richard Hamming 

• We want to demonstrate such a system. 
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Hydrodynamics 

The wide range EOS 
closure surface is 
epistemically uncertain. 

These equations are an 
excellent model for 
many practical systems.  
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The Predictive Analysis Cycle 

Hydro Calculations 

DFT-MD computations + 
experimental data + 
associated error estimates 

Formally represent 
an uncertain  EOS  

Determine how and where in 
phase space the uncertainty in 
the EOS representation  is 
affecting the uncertainty in 
continuum output. 

Feedback requirements to 
DFT-MD modelers and 
validation data sources 

Current focus of our efforts is in blue 
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Uncertainty in the EOS Bridge 

The representation of the uncertainty in the EOS bridge has 
emerged as a critical issue to production delivery of 
uncertainty information. 
 
• Uncertain parametric EOS 

•Model forms with several to tens of EOS parameters as 
random variables. 

  
• Uncertain tabular EOS 

• Option 1: Deliver separate tables at evaluations points in 
probability space. 
• Option 2:  Build a compressed representation of the 
uncertain EOS.  
 

•  All techniques should be consistent but will have different 
performance characteristics 
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Bayesian Viewpoint 

•Uncertain quantities are represented as random variables. 
 

•The Bayesian view of probability 
•Probability is inherently the degree of belief in a proposition 
•Not necessarily derived from sampling or observations 
•Handles both aleatory and epistemic uncertainty 

 
•Bayes’ Theorem: 
 
 
 
 
 
 

• The likelihood is usually a composite of fit and noise models. 
normalization 

prior likelihood 
posterior 
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Direct Parametric EOS Representation 

•The vector of parameters λ is inferred from data. 
 

•Noise in data implies uncertainty in parameters. 
 

•Bayesian inference provides a (joint) probability density for 
λ (Markov Chain Monte Carlo). 
 

•Pressure and temperature become random variables (for 
fixed density and internal energy). 
 

•Poor scaling as the dimension of λ becomes large. 
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Tabular Option 1 

•An ensemble of EOS tables can represent uncertainties. 
•Sample uncertain parameters  
•Ensemble of models 
•Each table given a weight 

 
•Expensive to store and distribute and manage a sufficient 
number of tables to represent uncertainties. 
 
•Can be used as a baseline for evaluating compressed formats. 
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Tabular Option 2 

•If we have an ensemble of EOS tables which are a 
representative sample of the uncertain EOS space we try to  
generate an optimal representation: 
 

•Provide maximum flexibility to the user. 
 

•Achieve significant compression. 
 

•Must deal with phase boundaries 
 

•Be efficient. 
 

•Only this option seems to have a potential production future. 
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Karhunen-Loève or PCA Representation 
•Given a (vector valued) process, find an optimal separated 
representation 
 

•      are eigenvalue/functions (o.n.) for the kernel 
 
 
•      are eigenvalue/functions (o.n.) for the kernel 
 
 

•For a discrete process and standard inner product, KL = 
Principal Component Analysis (PCA) => subtract mean and 
then calculate the singular value decomposition (SVD) 
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Tabular Option 2 – PCA method 

Use Principal Component Analysis (PCA) to look for a reduced tabular 
representation: 
 
• Collect a representative sample of tables (e.g. PCE points or Monte Carlo). 
 
• Perform Principal Component Analysis (PCA) 
 
 
 
 
 
• H represents sample weights (e.g Gauss-Hermite) and G represents user 
specified weights for the sample entries. 
 
• Choose a truncated set of modes to export in tabular form. 
 
• In the hydrocode, generate EOS tables on-the-fly, given a sample of the 
random variables associated with each mode. 
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DAKOTA UQ Toolbox 

• DAKOTA is a well-known toolkit for black box large 
scale engineering optimization and uncertainty 
analysis. 
 

• The historical interface between DAKOTA and analysis 
codes is based on specialized file based 
communication interfaces controlled by user scripting. 
– This interface permits usage by analysts with modest 

scripting skills and determination. 
 

• Making the UQ enabled analysis standard engineering  
practice requires a much smaller “user energy barrier” 
at multiple points. 
 
 

http://dakota.sandia.gov/
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Embedded Dakota Interface in 
ALEGRA  

Moving from potentially fragile, study-specific script 
interfaces to a unified, user-friendly capability 

SNL DAKOTA 
optimization, calibration, 
sensitivity analysis, 
uncertainty quantification 

ALEGRA 

responses 
file 

parameters 
file 

loose coupling:  
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Internal API 
integrated with 
physics input 
and response 

functions; single 
input file 

Current Future 
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AL Flyer/Target Impact Test Case 

Simple shock analysis says that the free surface velocity 
should be slightly larger than the impact velocity for 
convex Hugoniots and release isentropes. 

Free surface velocity Impact velocity 

2 cm 1 cm 

We are using the new embedded interface for the results 
presented here. 
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A Computational Experiment 
Current tabular models do not come with a UQ representation.  Can we get a feel for the 
variation to be expected from different wide range tabular models with varying provenance, for a 
given interpolation scheme? 8 wide range tables were used as a surrogate for the drawing of 
realizations from a random field EOS. 

These results are 
indicative of what we 
expect to see from a 
more formal uncertain 
EOS modeling 
approach. e.g. small 
uncertainty at low 
impact velocities and 
high  uncertainty 
when traversing off 
Hugoniot states. 
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A UQ View of the Experiment 

Assume that the 8 tables each occur with a .125 probability 

•We see in the plots of the output cumulative distribution function (CDF) evidence of small 
uncertainty at low impact velocities and high uncertainty when traversing off Hugoniot states. 
•Note that the physical information content is not as rich as the previous slide. 
•Such a simplistic distribution assumption is, however, unacceptable. 
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Another UQ Experiment to Emphasize the Point 

Pick a simple Mie Gruneisen (MG) model accurate near the primary 
Hugoniot and a wide range EOS model.  Assume that each EOS has 
a .5 probability.  The huge variation at higher velocities is indicative 
of severe epistemic uncertainty as expected. 
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The Mie-Gruneisen (MG) Model  
as a Test Case 

Even though we know the MG equation of state is not accurate 
over a wide range it does have a small number of parameters 
and we can use this model as a test case for a more formalized 
approach for a wide range EOS. 
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MG “Analytic” Model 
Uncertain model parameters obtained from data 

Joint posterior distribution of the two parameters 
• represents uncertainty due to data noise 
• sampled with Markov Chain Monte Carlo  

Infer parameters C0 and S from 
shock data  

Particle velocity (km/s) 
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Uncertain parameters represented with Polynomial 
Chaos expansions and propagated through hydrocode 

Use 3 x 3 tensor product Gauss-
Hermite quadrature to compute 
coefficients of the spectral response 
representation. 

1st order Wiener Hermite coefficients 
obtained by Cholesky factorization of 
posterior covariance matrix (multi-variate 
normal (MVN) approximation) 
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Release Velocity (m/s) 
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CDF Convergence under  
Table Refinement using PCE 

 

• CDF converges to analytic result, as expected 
• Shift is converged within sampling error at N=512 
• Convergence appears faster than a power law 

• Problem: the converged N=512 produces a very large table for a 
simple, limited range EOS. Wide range EOS models typically have 
N~128. Improved tabulation methodologies are needed. 
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Improved Tabular Representation 
EOS tables built using unstructured triangular grids: 

 
 
 
 
 

• Wide-range EOS features, such as phase 
boundaries, easily followed. 

• Grid adaptation allows reduction of table 
size. 

• Using triangulated grid points identical to 
the rectangular tables, the PCA approach 
has been verified on the MG EOS 
example case. 

 
 
 
 

Some issues remain for a fully unstructured capability: 
• Grid adaptation for EOS representation error reduction can 

induce significant noise in the PCA analysis. 
• Boundary grid locations may be carefully chosen to eliminate 

this noise, but interior points of the mesh are a much more 
difficult optimization problem. 
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• We are developing a wide range EOS UQ modeling infrastructure 
that will allow significant automation of the modeling process and 
enable broader access for the engineering community to these 
capabilities. 

• The developed infrastructure includes: 
– User input: 

• EOS models and inference parameters 
• Experimental and calculation data 
• Choice of noise model 

– Bayesian inference of posterior distributions using MCMC techniques. 
– Automated extraction of multi-variate Gaussian PDF for inferred 

parameters. 
– Sampling of the inferred model parameters using Dakota. 
– Coordinated table generation at each sample point. 
– Condensed PCA representation of the ensemble of tables. 
– Unstructured triangular table read/write utilities for hydrocodes. 
 

 
 
 
 
 
 
 

Wide Range EOS UQ Infrastructure 
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Summary 

• We have outlined a general way of thinking about the 
upscaling UQ problem for shock hydrodynamics. 

• The basic PCA tabular approach shows promise as a 
workable conceptual framework for tabular delivery 
of parametric EOS model uncertainty to production 
users.   

• Proper weighting of sample realizations is essential.   
• We have pulled together an initial set of required 

technologies which are compatible with a 
sustainable UQ enabled EOS modeling technology. 
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