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Predictive Design of Z Experiments (Lemke)

Two-sided Strip-line Flyer
Plate Experiment

Resistive magnetohydrodynamics.
Accurate electrical conductivities.
Accurate equation of state (EOS).

Circuit model for self-consistent coupling.
DAKOTA optimization loops.

Density functional theory and molecular
dynamics (DFT-MD) computations are
needed to accurately characterize material
response.
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The Upscaling Promise
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#urrent Upscaling Practice and Our Goals

 Experimental data and DFT-MD are important to develop
accurate EOS and conductivity models.

e arious uncertainties are managed by expert users using
their experience and judgment.

« UQ=Uncertainty Quantification

— Epistemic Uncertainty = Reducible or model uncertainty
may be improved with additional knowledge or data.

— Aleatory Uncertainty = Irreducible Uncertainty

« What are the practical requirements for an upscaling UQ
technology for shock physics?

— Evolutionary, well grounded, accessible and backward compatible
“Probability is too important to be left to the experts.” — Richard Hamming

 We want to demonstrate such a system.
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Hydrodynamics

e Conservation of mass,
p+pV-u=0,

e Conservation of momentum, These eq uations are an
pit + Vp = 0, excellent model for
many practical systems.

e Conservation of energy,

pé +pV - -u=20,

Equation of state, p = P (p,e)

EOS tables: Multi-phase pressure surface in p — E
coordinates (hydrodynamic closure relation)

Pressure
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The wide range EOS N
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The Predictive Analysis Cycle

%
Determine how and where in €
phase space the uncertainty in
the EOS representation is
affecting the uncertainty in

continuum output. \

DFT-MD computations + Feedback requirements to
experimental data + ) DFT-MD modelers and
associated error estimates validation data sources

Current focus of our efforts is in blue @ ﬁgt"iﬂi.?m
Laboratories
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} Uncertainty in the EOS Bridge

The representation of the uncertainty in the EOS bridge has
emerged as a critical issue to production delivery of
uncertainty information.

e Uncertain parametric EOS
*Model forms with several to tens of EOS parameters as
random variables.

» Uncertain tabular EOS
» Option 1: Deliver separate tables at evaluations points in
probability space.
» Option 2: Build a compressed representation of the
uncertain EOS.

 All technigues should be consistent but will have different
performance characteristics
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}' Bayesian Viewpoint

*Uncertain quantities are represented as random variables.

*The Bayesian view of probability
*Probability is inherently the degree of belief in a proposition
*Not necessarily derived from sampling or observations
*Handles both aleatory and epistemic uncertainty

*Bayes’ Theorem:

likelihood

\
\p( 51a) — P TB)

p(d) <——— normalization

» The likelihood is usually a composite of fit and noise models.
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}Direct Parametric EOS Representation

P=P(p,E;\)  T=T(p,E; N

*The vector of parameters A is inferred from data.
*Noise In data implies uncertainty in parameters.

*Bayesian inference provides a (joint) probability density for
A (Markov Chain Monte Carlo).

*Pressure and temperature become random variables (for
fixed density and internal energy).

*Poor scaling as the dimension of A becomes large.
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}' Tabular Option 1

10

*An ensemble of EOS tables can represent uncertainties.
«Sample uncertain parameters
*Ensemble of models
*Each table given a weight

*EXxpensive to store and distribute and manage a sufficient
number of tables to represent uncertainties.

«Can be used as a baseline for evaluating compressed formats.
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}' Tabular Option 2

oIf we have an ensemble of EOS tables which are a
representative sample of the uncertain EOS space we try to
generate an optimal representation:

*Provide maximum flexibility to the user.
*Achieve significant compression.

*Must deal with phase boundaries

*Be efficient.

*Only this option seems to have a potential production future.
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A4
arhunen-Loeve or PCA Representation

*Glven a (vector valued) process, find an optimal separated
representation F(x,€) = Fy(x) + Zgi 0i (&) Fy(z)
1=1

*(07, F;(x)) are eigenvalue/functions (0.n.) for the kernel

Oz, y) = / F(z,€)FT(y, €) du(é)

*(02,p;(£)) are eigenvalue/functions (o.n.) for the kernel

K(60) = [(F@.8),P(e,0)) dn(z)
For a discrete process and standard inner product, KL =

Principal Component Analysis (PCA) => subtract mean and
then calculate the singular value decomposition (SVD)

3
x{
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}. Tabular Option 2 — PCA method

Use Principal Component Analysis (PCA) to look for a reduced tabular
representation:

 Collect a representative sample of tables (e.g. PCE points or Monte Carlo).

» Perform Principal Component Analysis (PCA)
z=7ZHY?1/1"TH1 G (z-a")H =0svT
r =24+ U =24+GVUSE =2+ (Z —21T)HY*V¢

* H represents sample weights (e.g Gauss-Hermite) and G represents user
specified weights for the sample entries.

» Choose a truncated set of modes to export in tabular form.

* In the hydrocode, generate EOS tables on-the-fly, given a sample of the
random variables associated with each mode.
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A
4’ DAKOTA UQ Toolbox

« DAKOTA is a well-known toolkit for black box large
scale engineering optimization and uncertainty
analysis.

* The historical interface between DAKOTA and analysis
codes Is based on specialized file based
communication interfaces controlled by user scripting.

— This interface permits usage by analysts with modest
scripting skills and determination.

e Making the UQ enabled analysis standard engineering
practice requires a much smaller “user energy barrier”
at multiple points.
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http://dakota.sandia.gov/

P cadl

Embedded Dakota Interface in

ALEGRA

-
SNL DAKOTA _

.

= Optimization, calibration,
sensitivity analysis, '
uncertainty quantification

aramete
file

Current
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loose coupling:
file system
interface with
separate
executables

-
ALEGRA
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physics input
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/

Moving from potentially fragile, study-specific script

Interfaces to a unified, user-friendly capability

Future
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'
AL Flyer/Target Impact Test Case

We are using the new embedded interface for the results
presented here.

Impact velocity Free surface velocity

1cm 2cm

Simple shock analysis says that the free surface velocity
should be slightly larger than the impact velocity for
convex Hugoniots and release isentropes.
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A Computational Experiment

Current tabular models do not come with a UQ representation. Can we get a feel for the
variation to be expected from different wide range tabular models with varying provenance, for a
given interpolation scheme? 8 wide range tables were used as a surrogate for the drawing of
realizations from a random field EOS.
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These results are
indicative of what we
expect to see from a
more formal uncertain
EOS modeling
approach. e.g. small
uncertainty at low
iImpact velocities and
high uncertainty
when traversing off

Hugoniot states.
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A UQ View of the Experiment

Assume that the 8 tables each occur with a .125 probability

CDF of free surface velocity at time 4.0e-6 (s)
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*\We see in the plots of the output cumulative distribution function (CDF) evidence of small
uncertainty at low impact velocities and high uncertainty when traversing off Hugoniot states.
*Note that the physical information content is not as rich as the previous slide.

*Such a simplistic distribution assumption is, however, unacceptable.
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other UQ Experiment to Emphasize the Point

Pick a simple Mie Gruneisen (MG) model accurate near the primary
Hugoniot and a wide range EOS model. Assume that each EOS has
a .5 probability. The huge variation at higher velocities is indicative
of severe epistemic uncertainty as expected.
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The Mie-Gruneisen (MG) Model

2, &7 e vie-Grunei
} as a Test Case

Even though we know the MG equation of state is not accurate
over a wide range it does have a small number of parameters
and we can use this model as a test case for a more formalized
approach for a wide range EOS.

P(p,E) = Pr(p)+Topo(E — Er(p))
E(p,T) = Egr(p)+Cy(T —Tr(p)),

us = Cp + Sy,
PR(p) = ([)) Py + pousty,
Er(p) = Eu(p) = Eo+ (Pu+ Fo)u/2po
Iz d
Tr(p) = Tulp)=e""[Ty+Cy' f M C;fjdu}
0
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~ MG “Analytic” Model

Uncertain model parameters obtained from data
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Joint posterior distribution of the two parameters
» represents uncertainty due to data noise
« sampled with Markov Chain Monte Carlo
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'ncertain parameters represented with Polynomial
aos expansions and propagated through hydrocode
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obtained by Cholesky factorization of
posterior covariance matrix (multi-variate
normal (MVN) approximation)
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Comparison of Posterior (blue) with MVN (red)
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' CDF Convergence under
' Table Refinement using PCE

0.1

0 1 1 1 1 1 1 1 1 1 1
1000.7 1000.75 1000.8 1000.85 1000.9 4 8 16 32 64 128 256 512 1024

Release velocity (km/s) N

* CDF converges to analytic result, as expected

 Shift is converged within sampling error at N=512

» Convergence appears faster than a power law
* Problem: the converged N=512 produces a very large table for a
simple, limited range EOS. Wide range EOS models typically have
N~128. Improved tabulation methodologies are needed.

@ ﬁandia I
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Improved Tabular Representation

EOS tables built using unstructured triangular grids:

24

 Wide-range EOS features, such as phase
boundaries, easily followed.

 Grid adaptation allows reduction of table
size.

* Using triangulated grid points identical to
the rectangular tables, the PCA approach
has been verified on the MG EOS
example case.

Probability
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Some issues remain for a fully unstructured capability:
» Grid adaptation for EOS representation error reduction can

induce significant noise in the PCA analysis.

 Boundary grid locations may be carefully chosen to eliminate

this noise, but interior points of the mesh are a much more

difficult optimization problem.
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A g
f# Wide Range EOS UQ Infrastructure

 We are developing awide range EOS UQ modeling infrastructure
that will allow significant automation of the modeling process and
enable broader access for the engineering community to these
capabilities.
 The developed infrastructure includes:
— User input:
« EOS models and inference parameters

o Experimental and calculation data
* Choice of noise model

— Bayesian inference of posterior distributions using MCMC techniques.

— Automated extraction of multi-variate Gaussian PDF for inferred
parameters.

— Sampling of the inferred model parameters using Dakota.

— Coordinated table generation at each sample point.

— Condensed PCA representation of the ensemble of tables.

— Unstructured triangular table read/write utilities for hydrocodes.

@ ﬁandia I
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A
*’# Summary

 We have outlined a general way of thinking about the
upscaling UQ problem for shock hydrodynamics.

 The basic PCA tabular approach shows promise as a
workable conceptual framework for tabular delivery
of parametric EOS model uncertainty to production
users.

* Proper weighting of sample realizations is essential.

 We have pulled together an initial set of required
technologies which are compatible with a
sustainable UQ enabled EOS modeling technology.
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