
Matthew Areno
University of New Mexico

mareno@ece.unm.edu

Jim Plusquellic
University of New Mexico

jimp@ece.unm.edu

2012 International Symposium on Advances
in Trusted and Secure Information Systems

SAND2012-4953C

mailto:jimp@ece.unm.edu
mailto:mareno@ece.unm.edu

 What are Trusted Execution Environments
(TEEs)?

 How do they work with the secure boot
process?

 How can a PUF be used to protect a TEE?

 What are the benefits provided with a PUF
generated secret key?

 What are the possible applications of this
method?

 How will this be proven?

 A separate execution environment that is
isolated from the Rich-OS execution
environment, or REE.

 Currently being standardized by Global
Platform.

 Consist of both hardware and software
elements, with the hardware providing the
assurance of isolation and the software
providing communication and execution
mechanisms between the two.

• Hardware is partitioned
into two levels of
functionality: trusted
(secure) and public
(non-secure)

• Hardware support, via
mechanisms such as
ARM TrustZone,
prohibit access of secure
elements by non-secure
applications.

• Includes support for
separate interrupts,
memory partitioning,
and world switches.

• Software API
provides access to
trusted (secure)
element from the
REE.

• World switches
handled via monitor
code invoked
through SMC
instruction.

• Additional
communication and
data sharing
available through
TEE/REE shared
memory channel.

SoC

The first step is pulling the boot-rom from some form of read-only memory
and loading it into secure RAM.

SoC

Next, the microprocessor begins execution out of the secure RAM.

SoC

The microprocessor then sends a command to the crypto engine to retrieve
a secret key from some form of ROM and decrypt the 1st stage bootloader
from flash.

SoC

The resulting decrypted bootloader is then loaded into either SRAM or
standard DRAM and execution continues.

 For secure boot, the previous process is used
with the addition of two extra elements:
measurement and verification.

 After decrypting each stage, the code is
measured, typically with some type of hash
algorithm, such as SHA-1.

 The result is then compared with a known
correct value (typically stored in NVROM).

 If they match, bootup continues. Otherwise,
either the boot is canceled or it continues in a
non-secure state.

 In a secure boot environment, TEEs are treated
similarly to bootloaders.

 Because the measurement value for the TEE
must be stored in NVROM, this prohibits
alteration or modification of the TEE.

 Further, TEEs will typically be identical for
multiple devices.

 If the TEE is encrypted on the device, that
encryption key will also be identical for
multiple devices.

 A PUF, or Physically Unclonable Function, is
capable of generating unique-per-device
security keys.

 By incorporating a PUF generated key into the
SoC cryptographic engine, we can provide the
ability to encrypt/decrypt the TEE for each
device in a unique manner.

 Further, the PUF generated key can be used to
encrypt the measurement value of the TEE,
allowing the TEE to be modified.

SoC

Devices supporting PUF generated keys.

SoC

Devices supporting PUF generated keys.

SoC

Devices supporting PUF generated keys.

PUF encrypted TEE

1st Stage Bootloader

2nd Stage Bootloader

Kernel/REE

PUF Encrypted TEE Header
OFFSET SIZE DESCRIPTION

0x0000 64 bytes SHA-512 Hash of TEE

0x0040 4 bytes TEE Magic Number

0x0044 4 bytes TEE Manufacturer

0x0048 4 bytes TEE Version Number

0x004C 4 bytes Encryption Routine

0x0050 8 bytes Offset to Bootloader

0x0054 424 bytes Padding

 Each device is encrypted with a different key,
making information about one device useless
for another.

 No one, even the manufacturer, knows what
key each device is using.

 TEE measurement information is protected and
rewriteable, providing a mechanism for
expansion and customization of the TEE.

 Platform will support any TEE implementation
available.

 This technology has several possible
applications, including:

• Handheld Cellular Devices
• Femtocell Devices
• Healthcare systems

• Automotive systems
• Handheld communications
• Wireless Technologies

 Together with TEEs, this can provide
protection for software applications, such as:

• Banking Transactions
• Mobile payment systems
• Corporate VPN
• NFC
• Sensitive information

transactions

• Authentication
• Remote attestation
• Mobile Trusted Modules (mTPM)
• OTA updates
• Automotive firmware updates

 Development of FPGA-based PUF.[1]

 Acquire Xilinx Zynq-7000 development kit with
embedded dual-core ARM Cortex A9 processors.

 Import FPGA-based PUF onto platform and create
cryptographic unit accessible from ARM CPUs.

 Utilizing ARM TrustZone technology, create TEE and
store securely on Flash.

 Show ability to customize TEE to provide greater
functionality.

 Port Android and incorporate into the system
architecture.

[1] Already completed and published at HOST 2012.

?

