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Ardelean et al. (2010) 
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Presenting a new 
viscous damping model for shear beams 

that yields approximately  
constant modal damping 



Power & data cables modify spacecraft 
dynamics, especially at high frequency 

•  Cabling can account for 30%  
of spacecraft dry mass! 
–  Increasing power / data reqts 
–  Decreasing density of structure 

•  Accurate dynamics model is 
essential for spacecraft design 
–  Launch loads 
–  Precision control 

•  Current models (structure only) 
over-predict response levels 
–  Cables add damping 

•  Ground testing can augment 
models, but is incomplete 
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Ardelean et al. (2010) 



Spacecraft & cable dynamics are 
coupled through cable tiedowns 
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Goodding (2008) 
Ardelean et al. (2010) 



Cables are modeled using effective 
stiffnesses determined experimentally 
•  Extension testing: EA   Lateral testing: EI & κG 
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Sandia NL — Ardelean et al. (2010) 



Experimental results show that 
modal damping is approximately constant 
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•  12 families 
•  100 cables 



Cables modeled as shear beams 
initially with “structural” damping 
•  By researchers at  

Sandia / AFRL / CSA Engineering / Schafer Corp. 
–  Goodding, Ardelean, Babuška, Coombs, et al.  (2008-2011) 

•  Predicts natural frequencies, but          
damping model is inadequate 

•  Time-domain model essential 
–  Transients & impact response 
–  Nonlinearities 

•  Ideal: ~constant damping 
–  Higher damping in higher modes              

to reduce response 
•  Need better understanding             

of physical mechanisms 
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Coombs et al. (2011) 



•  Especially for SS BCs 

•  Modal EOM 

Frequency-independent modal damping 
is possible for Euler-Bernoulli beams 
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Can this be extended to a shear beam? 

BCs: w(0,t) = w(L,t) = !!w (0,t) = !!w (L,t) = 0
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Including first-order transverse shear  
requires two variables from three choices 

•  Shear strain contains correction factor κ 
–  Actual shear strain is not constant through the thicknes 

–  Shear force related to nominal shear strain 
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! 

w =  transverse  displacement
" =  rotation  due  to  bending
# =  shear  angle

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Plate_theory.svg/500px-Plate_theory.svg.png 
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Simply-supported BCs  
provide valuable insight into behavior 

•  Mode shape is integer number of half-sine waves 

•  Modal EOM and natural frequencies 

•  Shear parameter relates bending & shear stiffness 
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•  Transition described by shear parameter 

•        Limiting behavior 

Vibration modes can be separated into  
bending- and shear-dominated regimes 

11 

!m2 = 1 " m =
1
!

! 

" = 0.01

!m

!1

~ m2 "m2 <<1
m "m2 >>1

#
$
%

&%



Two common viscous damping models 
yield unrealistic damping behavior 
•  Coupled EOM: 

•  Combined in single EOM: 

•  Resulting damping: 
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Shear- and bending-related damping 
terms yield good results 

•  Introduce two internal shear forces for damping 
–  Associated with time rate of change of shear & bending angles 

•  EOM with damping 

•  Shear- and bending-related damping contributions  
are explicitly separated 
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A range of damping trends available  
from choice of shear & bending terms 

14 

! 

"#

"$

=
1
2

! 

"#

"$

=1

! 

"#

"$

=
3
4

! 

"#

"$

=
1
4

! 

"#

"$

= 0

! 

" = 0.01



Proposed model provides realistic  
and approximately constant damping 
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A numerical (FE) approach can use 
conventional K, KG, & M matrices 
•  Coupled EOM 

•  Combined in single EOM in φ 

•  Forcing might be known; it could be finite-differenced 
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FE analysis confirms damping variation 
with mode number for various BCs 
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Proposed model with motion-, shear-, 
and bending-based terms fits data well 
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Time-domain damping model for shear beams 
captures dynamics of spacecraft cabling 

•  Behavior can be separated into     
bending- and shear-dominated regimes 
–  Corresponding physical understanding 

•  Freq-independent modal damping  
achievable in bending region 
–  Can control damping in shear regime 
–  Can achieve best possible freq-indep 

•  Damping model can be readily  
implemented using FEM 
–  Uses conventional K, KG, & M matrices 

•  Model predictions agree well with 
 experimental data 
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Future work will examine realistic BCs 
and consider Timoshenko beam model 

•  Typical spacecraft cabling configuration 
–  Not really SS  or CC BCs 
–  Model as adjustable            

rotational stiffness 

•  Timoshenko model adds rotatory inertia 
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Ardelean et al. (2010) 
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