



Damping Models for Shear Beams with Applications to Spacecraft Wiring Harnesses

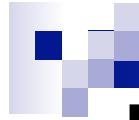
George A. Lesieutre and Jeffrey L. Kauffman
The Pennsylvania State University

Vít Babuška
Sandia National Laboratories

24 APR 2012

53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

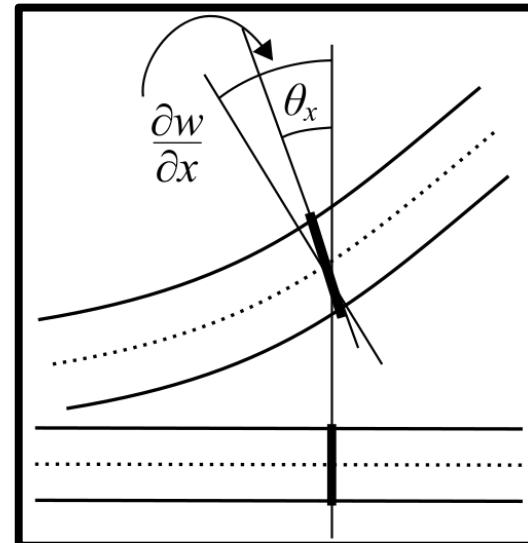


Presenting a new viscous damping model for shear beams

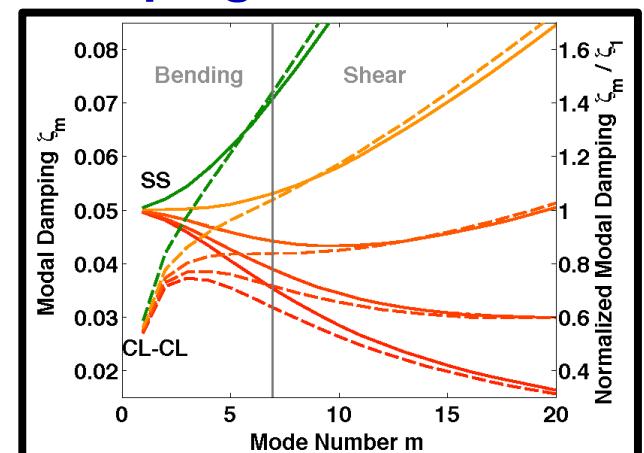
Spacecraft Cable Applications

that yields approximately
constant modal damping

Shear Beam & Model Development

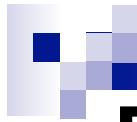


Damping Model Results



Ardelean et al. (2010)

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Plate_theory.svg/500px-Plate_theory.svg.png

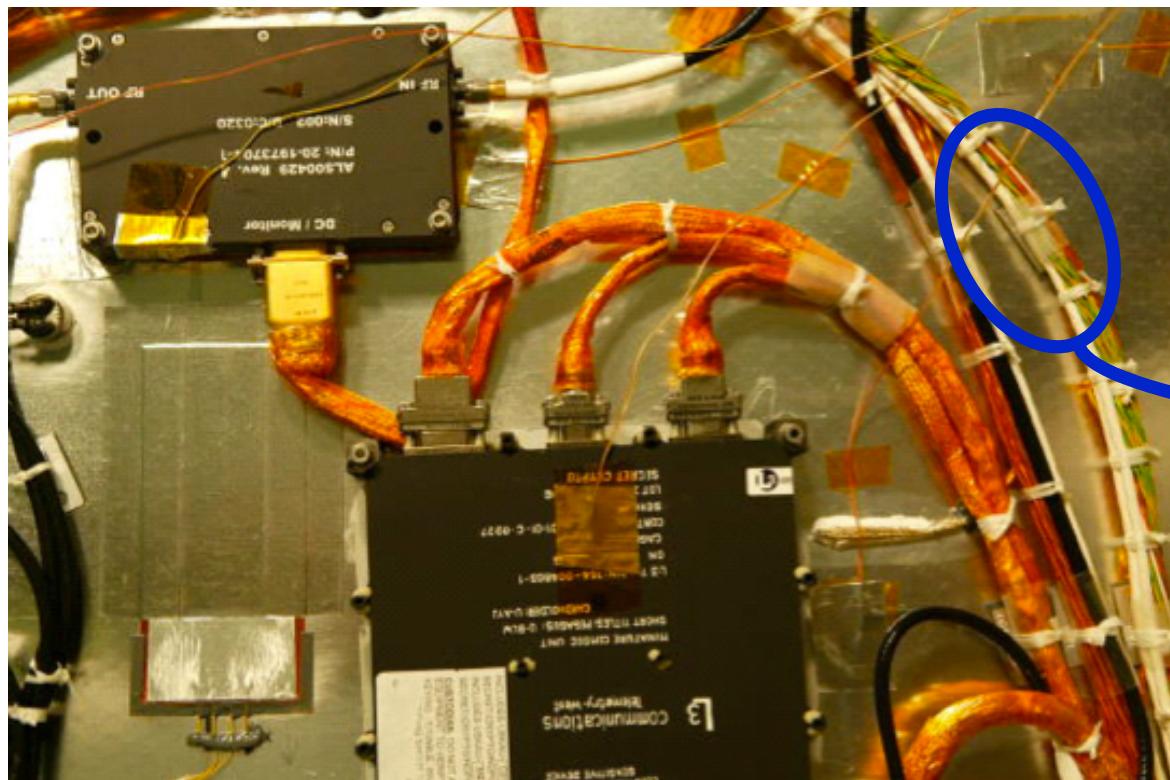


Power & data cables modify spacecraft dynamics, especially at high frequency

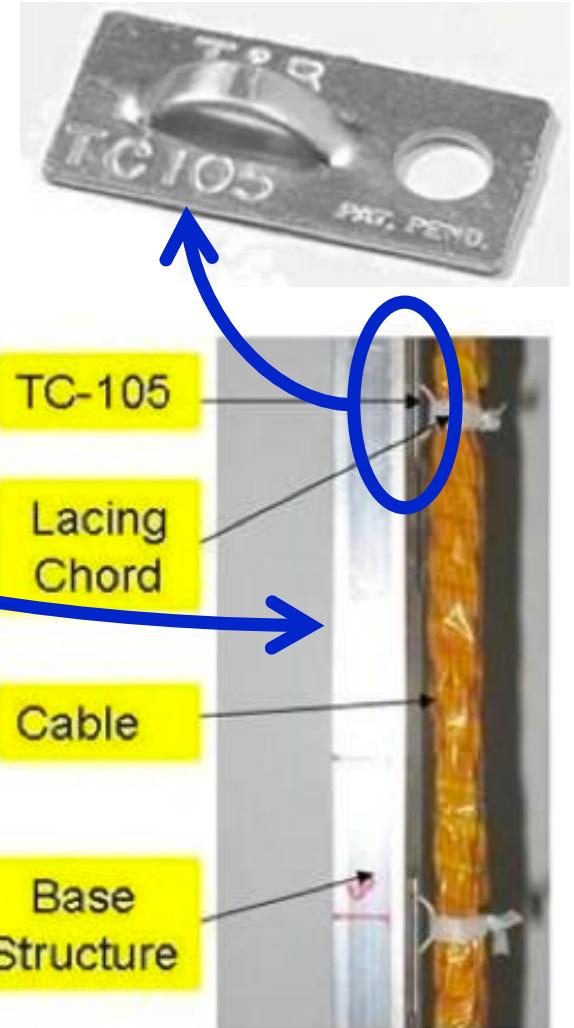
- Cabling can account for 30% of spacecraft dry mass!
 - Increasing power / data reqts
 - Decreasing density of structure
- Accurate dynamics model is essential for spacecraft design
 - Launch loads
 - Precision control
- Current models (structure only) over-predict response levels
 - Cables add damping
- Ground testing can augment models, but is incomplete

Ardelean et al. (2010)

Spacecraft & cable dynamics are coupled through cable tiedowns

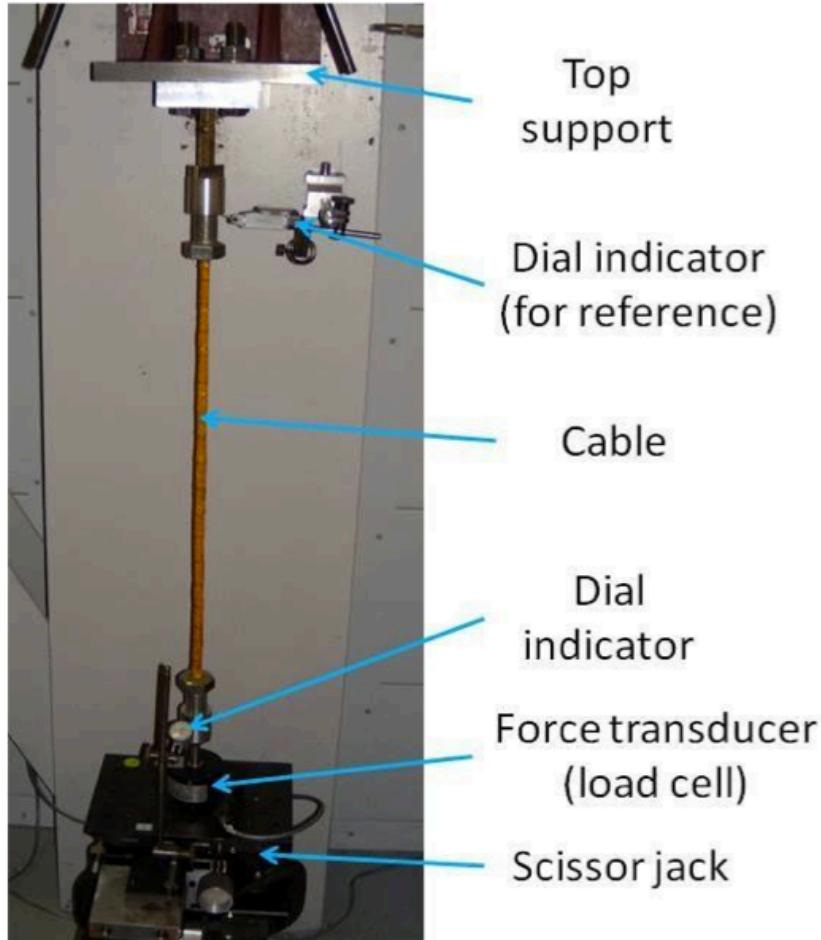


Goodding (2008)
Ardelean et al. (2010)



Cables are modeled using effective stiffnesses determined experimentally

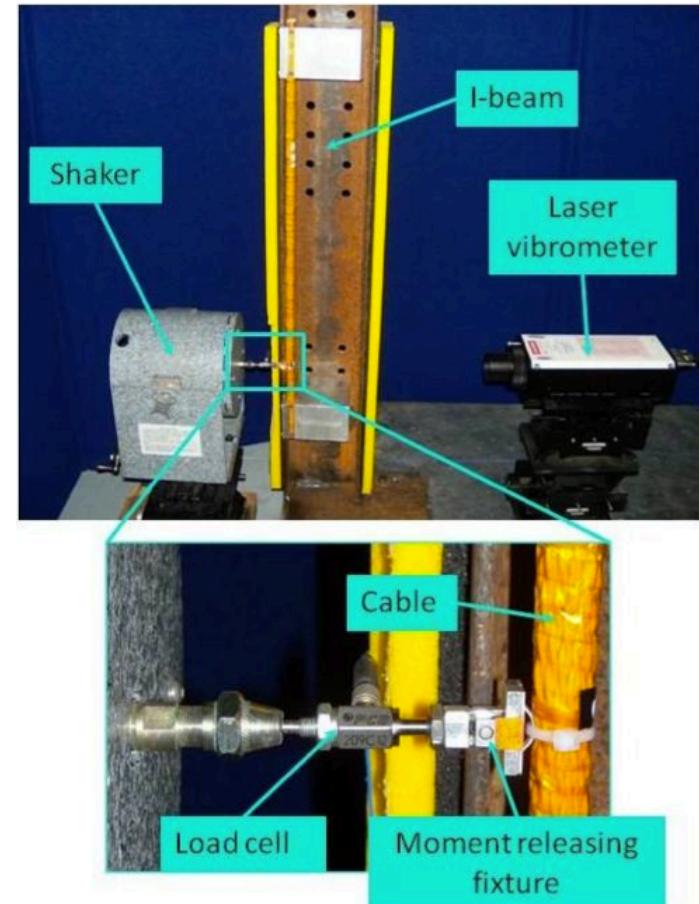
- Extension testing: EA



Sandia NL — Ardelean et al. (2010)

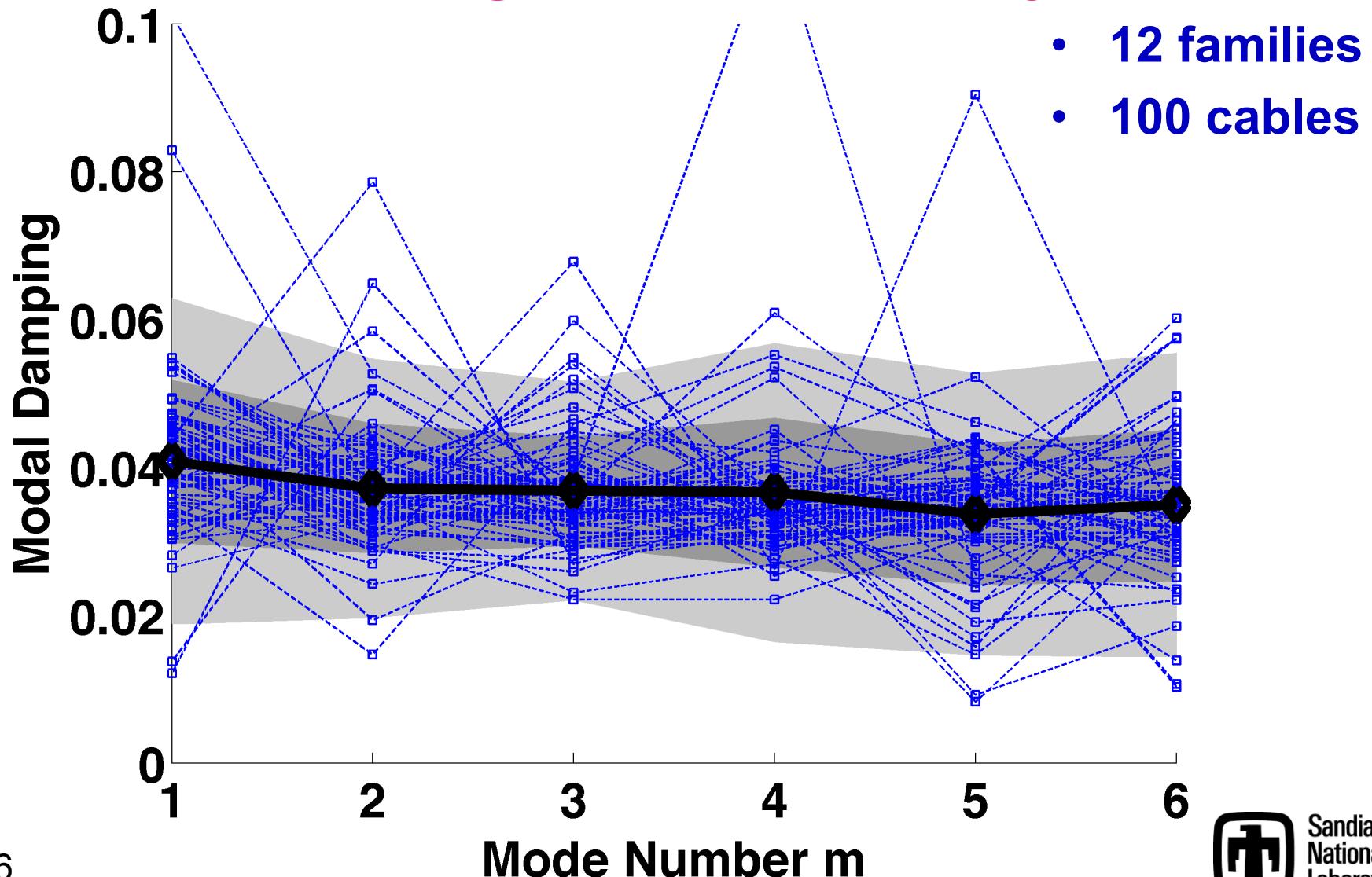
5

- Lateral testing: EI & κG



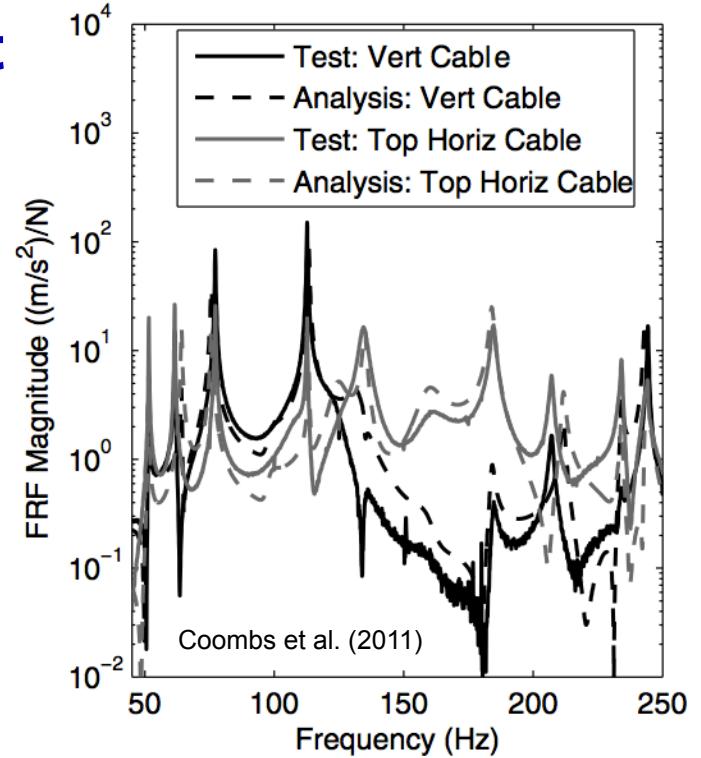
Sandia
National
Laboratories

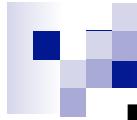
Experimental results show that
modal damping is approximately constant



Cables modeled as shear beams initially with “structural” damping

- By researchers at Sandia / AFRL / CSA Engineering / Schafer Corp.
 - Goodding, Ardelean, Babuška, Coombs, et al. (2008-2011)
- Predicts natural frequencies, but damping model is inadequate
- Time-domain model essential
 - Transients & impact response
 - Nonlinearities
- Ideal: ~constant damping
 - Higher damping in higher modes to reduce response
- Need better understanding of physical mechanisms

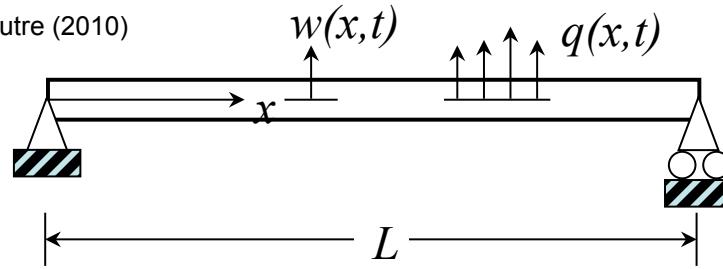




Frequency-independent modal damping is possible for Euler-Bernoulli beams

- Especially for SS BCs

Lesieutre (2010)



$$\rho A \ddot{w} - \alpha_G \dot{w}'' + EI w'''' = q$$

BCs: $w(0,t) = w(L,t) = w''(0,t) = w''(L,t) = 0$

$$w_m = a_m \sin \frac{m\pi x}{L}$$

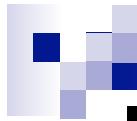
- Modal EOM

$$\ddot{a}_m \rho A + \dot{a}_m \alpha_G \left(\frac{\pi}{L} \right)^2 m^2 + a_m \left(\frac{\pi}{L} \right)^4 m^4 = 0$$

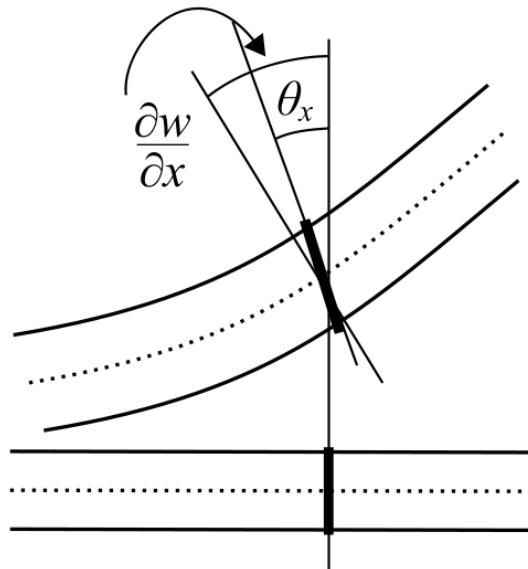
$$\omega_m = \sqrt{\frac{EI}{\rho A}} \left(\frac{m\pi}{L} \right)^2$$

$$\zeta_m = \frac{\alpha_G}{2\sqrt{\rho AEI}} = \text{constant!}$$

Can this be extended to a shear beam?



Including first-order transverse shear requires two variables from three choices



w = transverse displacement

φ = rotation due to bending

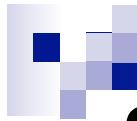
β = shear angle

$$\beta = w' - \varphi$$

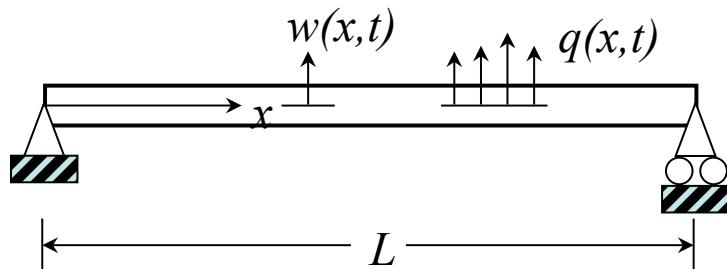
- **Shear strain contains correction factor κ**
 - Actual shear strain is not constant through the thickness
 - Shear force related to nominal shear strain

$$\varepsilon_{xz} = \kappa \beta = \kappa (w' - \varphi)$$

$$\int_A \tau \, dA = \kappa A G (w' - \varphi) = -EI\varphi''$$



Simply-supported BCs provide valuable insight into behavior



$$\rho A \ddot{w} - \frac{\rho A E I}{\kappa A G} \ddot{w}'' + E I w'''' = q - \frac{E I}{\kappa A G} q''$$

$$w(0,t) = w(L,t) = w''(0,t) = w''(L,t) = 0$$

- Mode shape is integer number of half-sine waves

$$w_m = a_m \sin \frac{m\pi x}{L}$$

- Modal EOM and natural frequencies

$$\ddot{a}_m \rho A \left(1 + \varepsilon m^2\right) + a_m \left(\frac{\pi}{L}\right)^4 m^4 = 0 \quad \rightarrow \quad \omega_m = \underbrace{\sqrt{\frac{E I}{\rho A}} \left(\frac{m\pi}{L}\right)^2}_{\omega_{m,BE}} \frac{1}{\sqrt{1 + \varepsilon m^2}}$$

- Shear parameter relates bending & shear stiffness

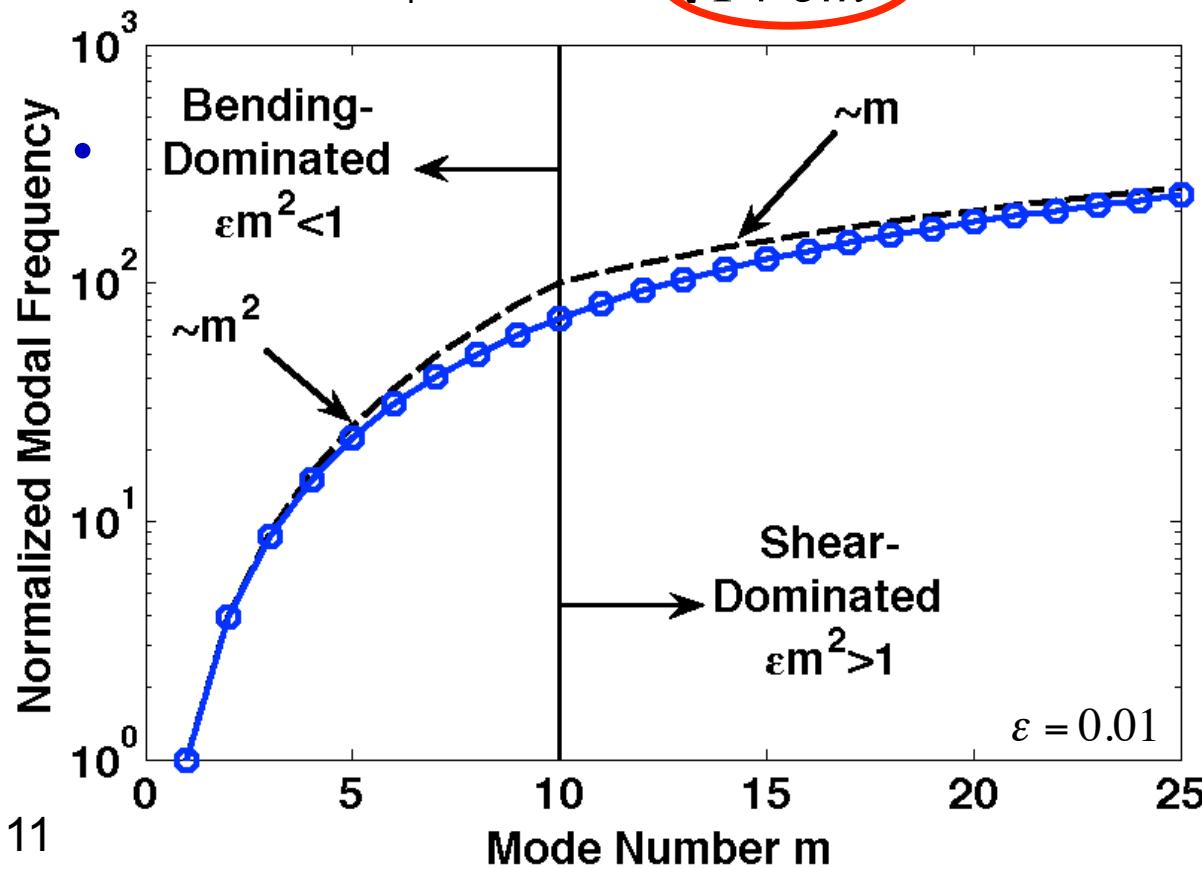
$$\varepsilon = \frac{E I \pi^2}{\kappa A G L^2}$$

Vibration modes can be separated into bending- and shear-dominated regimes

- Transition described by shear parameter

$$\frac{\omega_m}{\omega_1} = \sqrt{1 + \varepsilon} \frac{m^2}{\sqrt{1 + \varepsilon m^2}}$$

$\varepsilon m^2 = 1 \Rightarrow m = \frac{1}{\sqrt{\varepsilon}}$



Limiting behavior

$$\frac{\omega_m}{\omega_1} \sim \begin{cases} m^2 & \varepsilon m^2 \ll 1 \\ m & \varepsilon m^2 \gg 1 \end{cases}$$

Two common viscous damping models yield unrealistic damping behavior

- **Coupled EOM:**

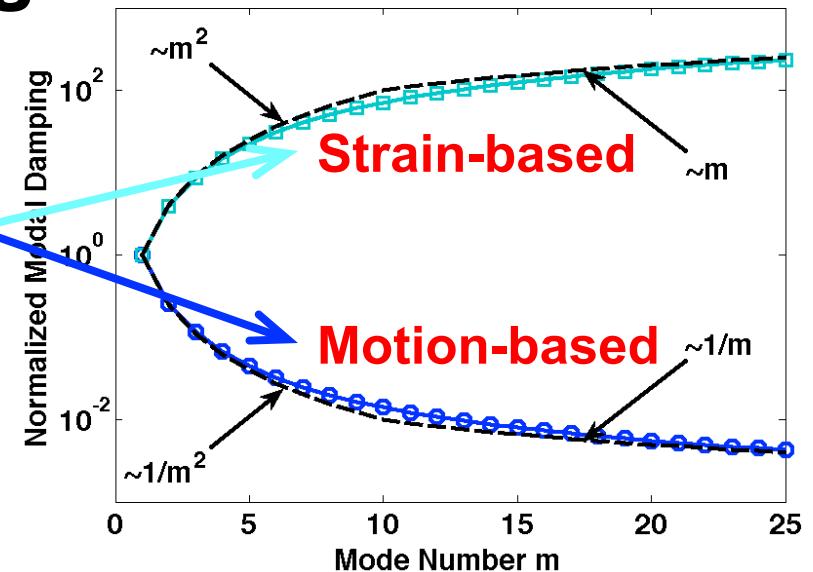
$$\begin{aligned} -\rho A \ddot{w} + \kappa A G (-\varphi' + w'') &= -q + \alpha_M \dot{w} \\ EI \varphi'' + \kappa A G (-\varphi + w') &= -\alpha_{EI} \ddot{w}''' \end{aligned}$$

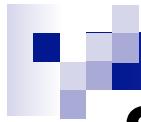
- **Combined in single EOM:**

$$\begin{aligned} \rho A \ddot{w} - \frac{\rho A E I}{\kappa A G} \ddot{w}'' + E I w'''' + \\ + \alpha_M \dot{w} - \alpha_M \frac{E I}{\kappa A G} \dot{w}'' + \alpha_{EI} \dot{w}''' &= q - \frac{E I}{\kappa A G} q'' \end{aligned}$$

- **Resulting damping:**

$$\zeta_m = \frac{1}{2\sqrt{\rho A E I}} \left[\alpha_M \frac{\sqrt{1 + \varepsilon m^2}}{\left(\frac{\pi}{L}\right)^2 m^2} + \alpha_{EI} \frac{\left(\frac{\pi}{L}\right)^2 m^2}{\sqrt{1 + \varepsilon m^2}} \right]$$





Shear- and bending-related damping terms yield good results

- Introduce two internal shear forces for damping
 - Associated with time rate of change of shear & bending angles

$$V = -\alpha_\beta \dot{\beta} - \alpha_\varphi \dot{\varphi}$$

- EOM with damping

$$-\rho A \ddot{w} + \kappa A G (-\varphi' + w'') = -q - \alpha_\beta \dot{\beta}' - \alpha_\varphi \dot{\varphi}'$$

$$EI\varphi'' + \kappa A G (-\varphi + w') = 0$$

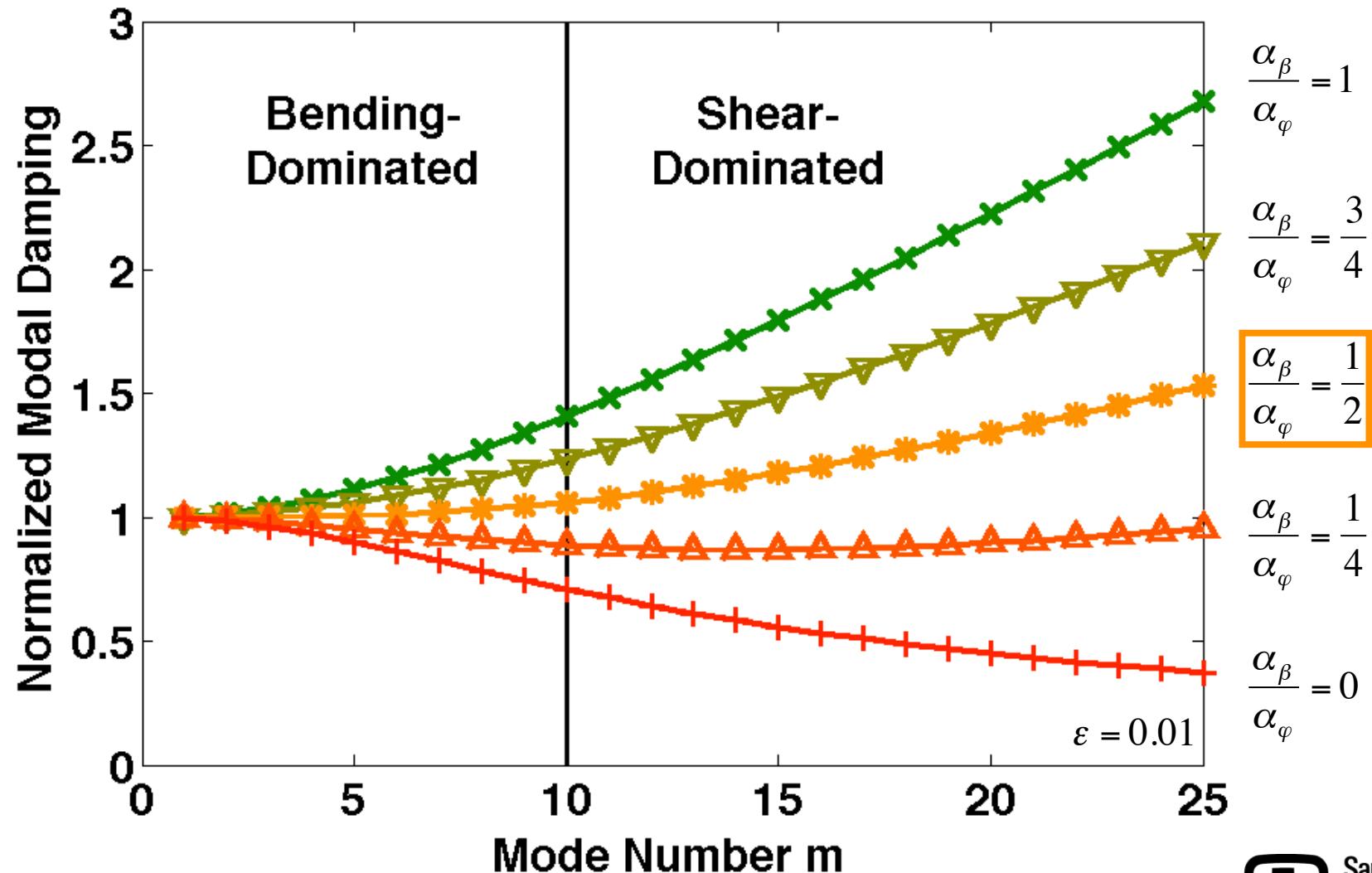
$$\rho A \ddot{\varphi} - \frac{\rho A E I}{\kappa A G} \ddot{\varphi}'' - \alpha_\varphi \dot{\varphi}'' + \alpha_\beta \frac{E I}{\kappa A G} \dot{\varphi}'''' + E I \varphi'''' = q'$$

$$\zeta_m = \frac{\alpha_\varphi}{2\sqrt{\rho A E I}} \frac{1 + \frac{\alpha_\beta}{\alpha_\varphi} \varepsilon m^2}{\sqrt{1 + \varepsilon m^2}}$$

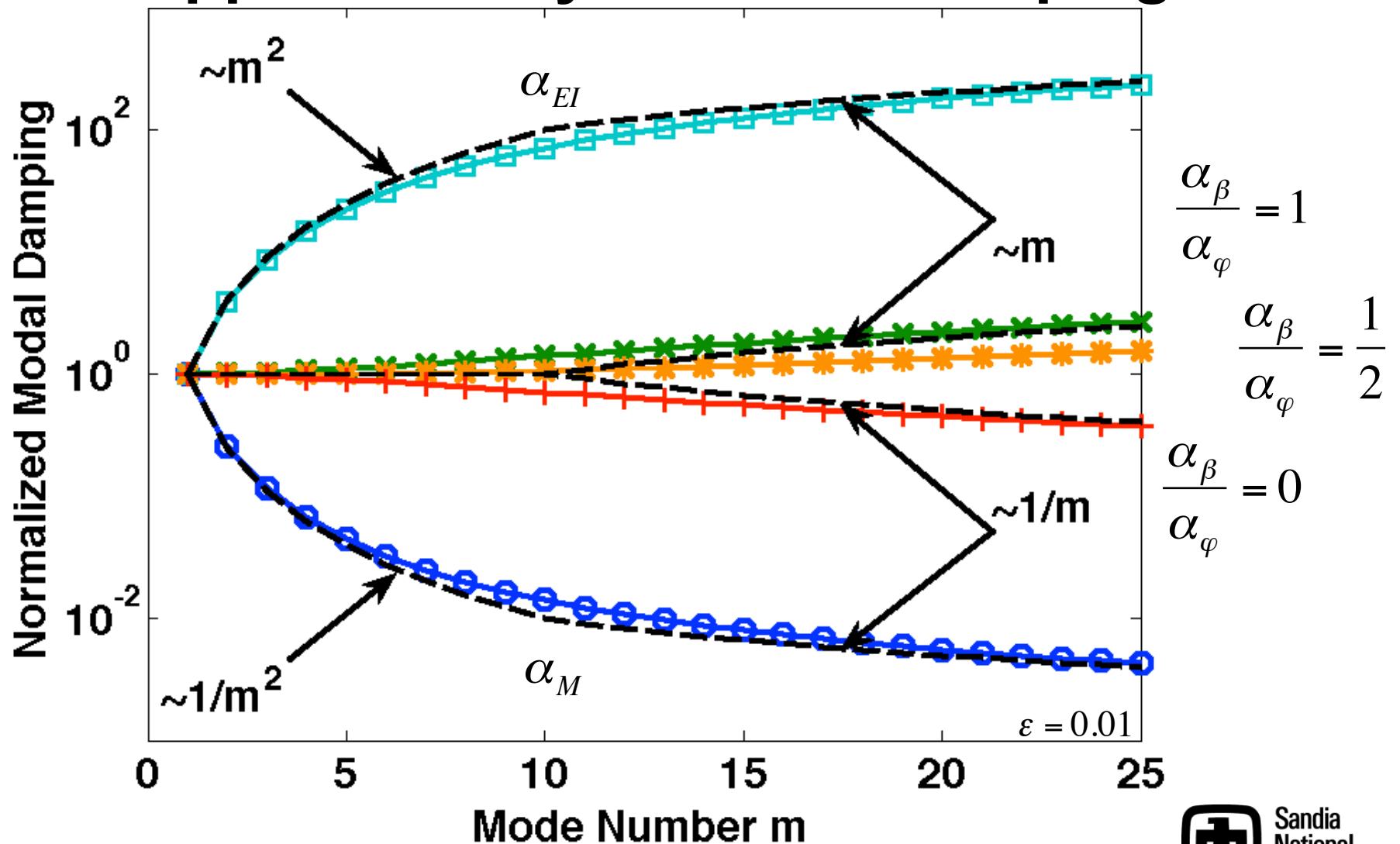
- Shear- and bending-related damping contributions are explicitly separated

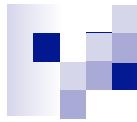
$$\zeta_m \sim \begin{cases} \alpha_\varphi \varepsilon m^2 \ll 1 \\ \alpha_\beta m \varepsilon m^2 \gg 1 \end{cases}$$

A range of damping trends available from choice of shear & bending terms



Proposed model provides realistic and approximately constant damping





A numerical (FE) approach can use conventional K, K_G, & M matrices

- **Coupled EOM**

$$-\rho A \ddot{w} + \kappa A G (-\varphi' + w'') = -q - \alpha_\beta \dot{\beta}' - \alpha_\varphi \dot{\varphi}'$$

$$EI\varphi'' + \kappa A G (-\varphi + w') = 0$$

- **Combined in single EOM in φ**

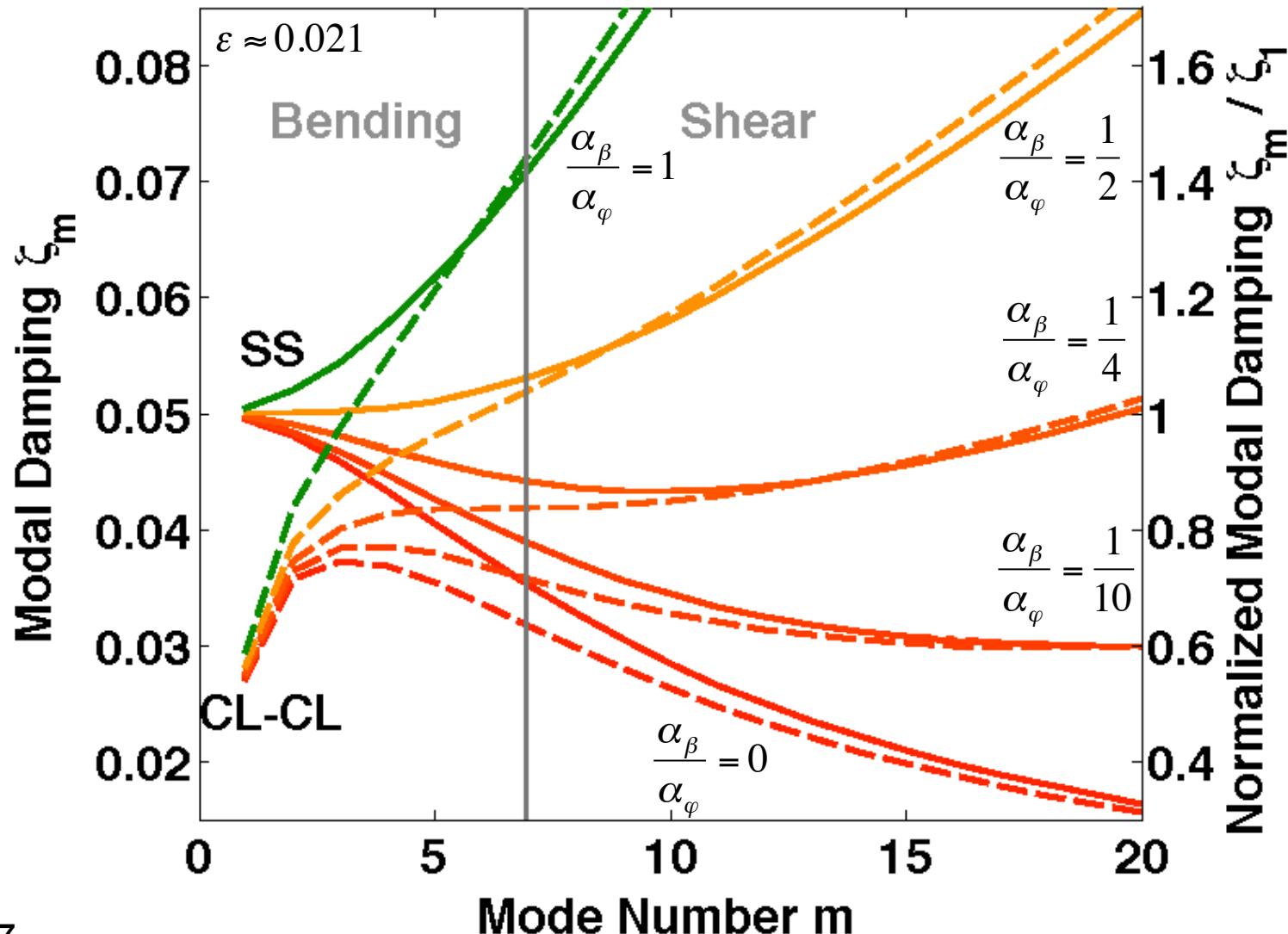
$$\rho A \ddot{\varphi} + \frac{\rho A E I}{\kappa A G} \ddot{\varphi}'' - \alpha_\varphi \dot{\varphi}'' + \alpha_\beta \frac{E I}{\kappa A G} \dot{\varphi}'''' + E I \varphi'''' = q'$$

$$\left[[M] + \frac{\rho A E I}{\kappa A G} [K_G] \right] \{ \ddot{\varphi} \} + \left[\alpha_\varphi [K_G] + \alpha_\beta \frac{1}{\kappa A G} [K] \right] \{ \dot{\varphi} \} + [K] \{ \varphi \} = \{ q' \}$$

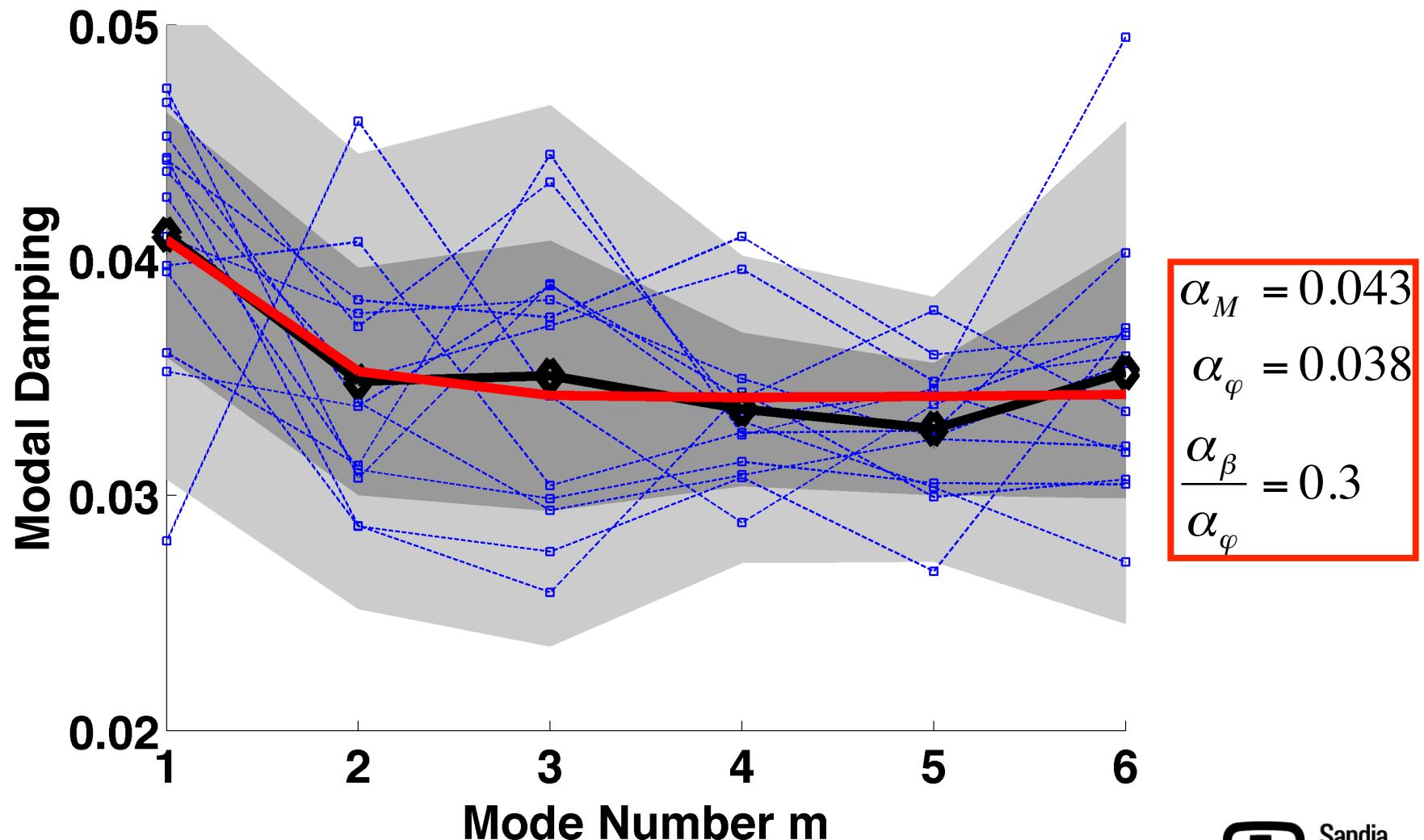
- **Forcing might be known; it could be finite-differenced**

$${}^n \{ q' \} \approx \frac{{}^{n+1} \{ q \} - {}^{n-1} \{ q \}}{2 L_{el}}$$

FE analysis confirms damping variation with mode number for various BCs

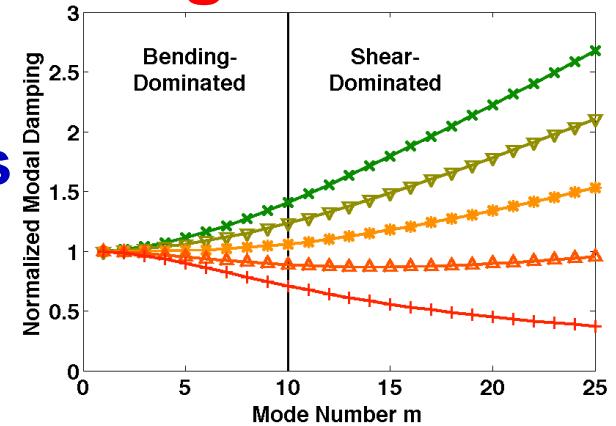


Proposed model with motion-, shear-, and bending-based terms fits data well

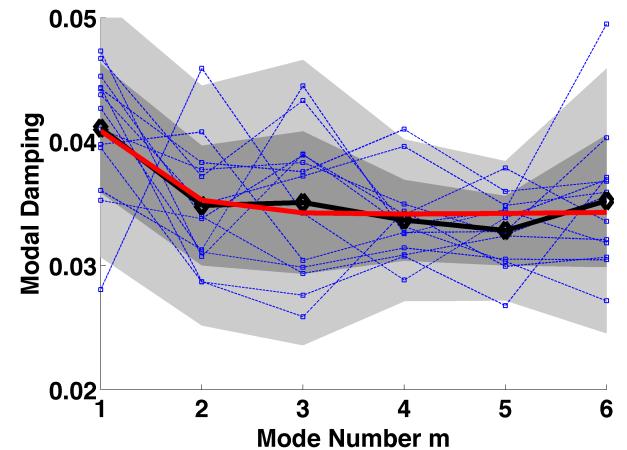


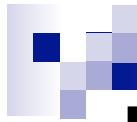
Time-domain damping model for shear beams captures dynamics of spacecraft cabling

- Behavior can be separated into bending- and shear-dominated regimes
 - Corresponding physical understanding
$$-\rho A \ddot{w} + \kappa A G (-\varphi' + w'') = -q - \alpha_\beta \dot{\beta}' - \alpha_\varphi \dot{\varphi}'$$
- Freq-independent modal damping achievable in bending region
 - Can control damping in shear regime
 - Can achieve best possible freq-indep
- Damping model can be readily implemented using FEM
 - Uses conventional K , K_G , & M matrices
- Model predictions agree well with experimental data



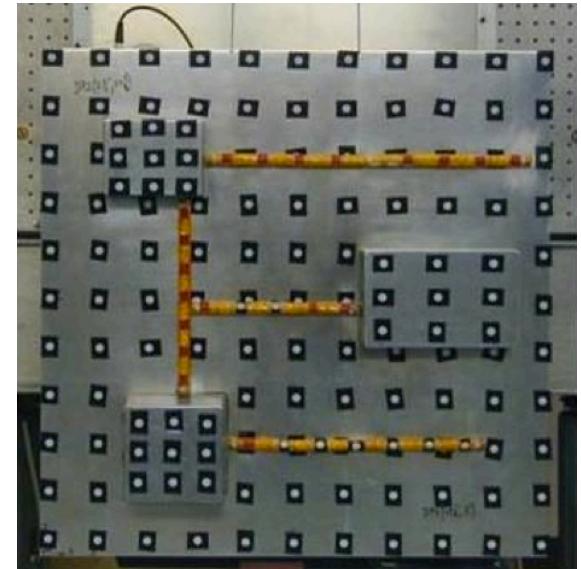
$$\zeta = \frac{\alpha_\varphi}{2\sqrt{\rho AEI}} \frac{1 + \frac{\alpha_\beta}{\alpha_\varphi} \varepsilon m^2}{\sqrt{1 + \varepsilon m^2}}$$





Future work will examine realistic BCs and consider Timoshenko beam model

- **Typical spacecraft cabling configuration**
 - Not really SS or CC BCs
 - Model as adjustable rotational stiffness

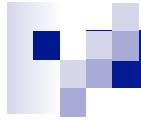


Ardelean et al. (2010)

- **Timoshenko model adds rotatory inertia**

$$-\rho A \ddot{w} + \kappa A G (-\varphi' + w'') = -q - \alpha_\beta \dot{\beta}' - \alpha_\varphi \dot{\varphi}'$$

$$-\rho I \ddot{\varphi} + EI \varphi'' + \kappa A G (-\varphi + w') = 0$$



Brought to you by our sponsors

- **Sandia National Labs, NM**
- **Air Force Research Lab, Kirtland AFB, NM**

... and the researchers who led the way:

Emil Ardelean – Schafer Corporation

Vit Babuska – Sandia National Laboratories

Doug Coombs - CSA Engineering

Derek Doyle – AFRL Sponsor

Jimmy Gooodding - CSA Engineering

Cody Griffee - CSA Engineering

Steven Lane – AFRL Sponsor

Lawrence “Robbie” Robertson – AFRL Sponsor

Hartono “Anton” Sumali – Sandia Sponsor