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Power & data cables modify spacecraft 9

dynamics, especially at high frequency

« Cabling can account for 30%
of spacecraft dry mass!
- Increasing power / data reqts
- Decreasing density of structure
 Accurate dynamics model is
essential for spacecraft design
- Launch loads
- Precision control
« Current models (structure only)
over-predict response levels
- Cables add damping

* Ground testing can augment
. . Ardelean et al. (2010)
models, but is incomplete @ Sandia
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Spacecraft & cable dynamics are ‘
coupled through cable tiedowns

Structure

Goodding (2008) | b
Ardelean et al. (2010)
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Cables are modeled using effective 9
stiffnesses determined experimentally
« Extension testing: EA Lateral testing: El & kG
| _ \ Top e
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Experimental results show that
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modal damping is approximately constant
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Cables modeled as shear beams W
initially with “structural” damping

By researchers at
Sandia / AFRL / CSA Engineering / Schafer Corp.

- Goodding, Ardelean, Babuska, Coombs, et al. (2008-2011)
Predicts natural frequencies, but " [ [— e vercans

damping model is inadequate 105 | | 2 Toct Ton Horiz catie

Time-domain model essential L
- Transients & impact response
- Nonlinearities

Ideal: ~constant damping

- Higher damping in higher modes N
to reduce response

FRF Magnitude ((m/s%)/N)
)

Coombs et al. (2011) |

Need better understanding 0 s 100 150 200 250

Frequency (Hz)

of physical mechanisms @ Sandi
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Frequency-independent modal damping@¥
is possible for Euler-Bernoulli beams

- Especially for SS BCs

A .. EIw'"" =
Lesieutre (2010) y}i(x’t) R Q(X, 0 p q

A > X é BCs: w(0,t)=w(L,t)=w"(0,t)=w""(L,t)=0

. mmx
L I ) w_=a, sin

 Modal EOM . \
JU JU
. A . il 2 il 4 =O
a,p +amaG(L) m +am(L) m

W = El(mn)2 C = % __ _ constant!
"\ pA\ L " 2+ pAEI |
Can this be extended to a shear beam?
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Including first-order transverse shear ¥
requires two variables from three choices

w = transverse displacement
@ = rotation due to bending

p = shear angle

p=w-¢

............................. '

« Shear strain contains correction factor k
- Actual shear strain is not constant through the thicknes

. =Kp= K(w’ —q))
- Shear force related to nominal shear strain

[,TdA = KAG(W’ — (p) = -Elgp"

Sandia
9 National
http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Plate_theory.svg/500px-Plate_theory.svg.png Laboratories




" PENNSTATE
Simply-supported BCs

provide valuable insight into behavior
PAEI El

rrry "

(’U A
17 1Y paw - Py B = g - ——g

A > x % KAG KAG

| I | w(0,t) =w(L,t)=w"(0,t)=w"(L,t)=0
< q

 Mode shape is integer number of half-sine waves

. MTX
w _=a, Sin

€’

 Modal EOM and natural frequencies

a,pA(1+em’) +a (—) m =0 EEp o (mn)z \/lé)n

« Shear parameter relates bending & shear stiffness
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Vibration modes can be separated into ¥
bending- and shear-dominated regimes
* Transition described by shear parameter
m’ > 1
—m = J1 — em =1 = m=—F
o + 8 \/;
Bendiné- | ~Mm | :

Normalized Modal Frequency

' Dominated «—
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Two common viscous damping models @&
yield unrealistic damping behavior

« Coupled EOM: ng- -
AV +KAG(=q' + W) = _q g ,‘ Strain-based ™.,
EI(p” +KAG(—(;0+W’)= _aEIwru \;NKO‘ p
+ Combined in single EOM: : | s Motion-based
210 ¢ 2895 ~-»_:__-,_,__':‘__
. PAEI . . am?” | | .
pAW ) MG wr EIW ' ° ° Mc::e Numb;fsm = 2
: EIl . : El
+ — wll + a WIIII —_ _ 1
AG EI q AG q
* Resulting damping: [ 2]
2
— | m
1 V1+em® (L)

& = 2 donmr |
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Shear- and bending-related damping

terms yield good results

€’

* Introduce two internal shear forces for damping
- Associated with time rate of change of shear & bending angles

V= —(xﬁﬁ’ -, Q

« EOM with damping
—pAW+KAG(—(p’+w”)= —q—aﬁ/?’—a(p(p’
Equ”+KAG(—q0+w’)= 0

:
1 +\Hem
. PAEI EI ., @ o4
PACO—%CO -a,Q +aﬁTcp +Elp'"" =4’ - §m= — @
2JPAEI 1+ em?

« Shear- and bending-related damping contributions
are explicitly separated . { em® <<1
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A range of damping trends available
from choice of shear & bending terms
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Proposed model provides realistic

and approximately constant damping
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A numerical (FE) approach can use |
conventional K, K, & M matrices

« Coupled EOM
—pAv'\'z+1<AG(—qp’ + w”) =-q- aﬁ/?’ -a,¢'
Elp" +KAG(—(p + w’) =0

« Combined in single EOM in ¢

.e pAEI ey N2 EI WANN rery
pA(p+KAG(p - @ +a;,——@ " +ElQpT =q

20N NN

]+ LG TR {0+ |, [Ke Dy KT o [K o= o)

* Forcing might be known; it could be finite-differenced
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FE analysis confirms damping variation ¥

with mode number for various BCs
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Proposed model with motion-, shear-, &

and bending-based terms fits data well
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BN
Time-domain damping model for shear beams @&

captures dynamics of spacecraft cal?ling

| Bending- Shear-
Dominated Dominated

Ind
2]

 Behavior can be separated into
bending- and shear-dominated regimes
- Corresponding physical understanding

N

<3 2 52 cost bl TON
M}_

5 10 15 20 25

* Freq-independent modal damping posetunbern
achievable in bending region O Iteem
- Can control damping in shear regime
- Can achieve best possible freq-indep

« Damping model can be readily
implemented using FEM
- Uses conventional K, K;, & M matrices

 Model predictions agree well with % 3 s 4 5 6

Mode Number m

experimental data @ Sandia
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Future work will examine realistic BCs W
and consider Timoshenko beam model

« Typical spacecraft cabling configuration
- Not really SS or CC BCs

- Model as adjustable
rotational stiffness

Ardelean et al. (2010)

 Timoshenko model adds rotatory inertia
—pAsz+1<AG(—q0' +w”) = —q—aﬁB’ -, Q'

—p[gb+EI§0”+KAG(—C0+W’)=O @San_dia
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