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1 THz  4 meV  48K  300 μm  33 cm-1

THz Regime Good for Metamaterial Sensing
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THz Imaging – Movement to FPAs
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Electronic 
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B. B. Hu and M. C. Nuss, Optics Letters, vol. 20, 
pp. 1716, 1995.
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Three main considerations

• Thermal Engineering: Conductance and Heat Capacity
• Physical property with sensitive thermal response
• Signal readout / amplification etc.
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E. H. Putley, “Thermal Detectors”

Thermal Detector Considerations
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95 GHz Characterization - Virginia Diodes Tunable THz Source
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Spectral Response of 95 GHz Detector
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Lorentz Fit of Peak Power Points

• Room T
• Ambient Pressure
• 15 Hz Chop Rate
• Lorentz fit 

matches TDS 
measurement 
(insert)



95 GHz Response to Power Attenuation

• Linear response 
with power

• τ ≈ 10 ms, 
sufficient for 
video rate 
applications
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Characterization of 693 GHz Detector

• Characterization 
done using a far 
infrared laser

• Formic acid line 
pumped with CO2

• High power but not 
tunable

• Beam alignment done 
using labview

• Raster scan of 
detector measuring 
transmission of 
measurement beam
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693 GHz Detector - Characterizatio
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Detector response linear with 
respect to incident power

NEP = 2.96 x 10-8 W/√Hz
τ = 20 ms

Sufficient for video rate 
applications
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693 GHz Detector - Beam Image of FIRL
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Beam profile taken by performing a 
raster scan of the FIRL beam

• The 95 GHz and 693 GHz 
detectors can be used in beam 
diagnostics

Beam profile 
matches 
Pyrocam
image



Future Work – Dipole coupled SRR

(a) (b)

• SRR size ~λ/10
• Far below diffraction limit
• Dipole Antenna ~λ/2 

maintain fast thermal time 
constant

(a) Absorption and 
transmission plot 
of single SRR 
with no dipole 
antenna

(b) Plot of Absorption 
in SRR with 
dipole antenna

(b)
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Future Work – Combining Silicon Photonics with Metamaterials

Design layout combining 
silicon photonics and 

metamaterials
• Place SRRs onto microdisk

resonator
• Enhance absorption in LWIR 
• Extend detection into other 

regions (THz)

Thermal Micro Photonic Focal 
Plane Array (TMFPA)

• NEP = 7.15 × 10-12 W/Hz1/2

• τ = 2 ms
• D = 2.47 × 108 cmHz1/2/W
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Simulation of the Magnetic Response





Table 1: Thermophysical properties of materials

Young’s 
modulus 

(GPa)

Poisso
n ratio

Expansion 
coefficient
(×10-6 K-1)

Thermal 
conductivity 
(W/(m·K))

Heat 
Capacity 
(J/Kg·K)

Emissivit
y

Densit
y 

(g/cm3)

Au 73 0.42 14.2 296 132 0.01 19.30

SiNx 180 0.26 3.2 5.5 333 0.8 2.44

Table 2: Dimension of microcantilever unit

Unit Size 
(μm)

Reflector 
(μm)

Leg length 
(μm)

Leg width 
(μm)

Au thickness 
(μm)

SiNx 
thickness (μm)

Frame width 
(μm)

Fold 
number

200×200 180×25 180 2 0.4 0.55 10 2

NETD: 10 mK

Thermal Analysis Yields

Limited by temperature stability

Bimaterial Cantilever Analysis



Experimental Setup: THz-TDS



We have an NEP of  ~ 10-10 W/Hz1/2

Similar Responsivity at 640 GHz

We think we can easily obtain a factor of ten improvement by increasing
the absorptivity and decreasing the thermal conductance

From DARPA TIFT Program


