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SCRAM [1,3] is a hybrid-structure code that combines fine
structure, RCs, (FAC [2]) and SCs (screened hydrogenic [4])

Each ion has:

~200 fine structure ~14,000 (800) rel (non-rel) ~1000* superconfigurations [4-
“coronal” levels (FAC [2]) configurations (FAC [2]) 5] (screened hydrogenic/LIMBO)
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Application: Diaghosing Mo plasmas on Z

D. Ampleford’'s LDRD: produce high-energy photons from high-Z materials using
beams rather than thermal processes [7] (cf. Ka production from fs lasers)
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Model must have extensive multiply excited valence structure for Auger/d.r.,
and each such configuration must be paired with one that has K-shell hole [8]

[7]1 Hansen, Ampleford et al, submitted to Phys Plasmas [8]Chung, Lee, and HEDP 3, 57, (2007)




Application: Hollow-ion emission from laser plasma [9]

We compared emission from ATOMIC/MUTA and SCRAM [10]
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Models need extensive multiply excited valence structure for statistics (e.g. 1s? (51)8),
and each such configuration must be paired with ones that have 1 & 2 K-shell holes

[9] Colgan, Faenov Phys. Rev. Lett. 110, 125001 (2013) [10] Submitted to Phys Plasma




In May 2013, Matt Gomez measured absorption lines
from Z that appeared to form a Zeeman triplet
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The absorption feature captured on the Streaked Visible Spectrometer (M. Gomez) was
tentatively identified as the 3s — 3p transition in Na |. Although the origin of the sodium
on the target was unknown, the splitting was consistent with estimated B ~200 T. {g&,




Placing droplets of salt water on various targets confirmed
the line identification and provided B diagnostic
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Zeeman splitting has been used to characterize B fields
in laboratory and astrophysical plasmas

When the effect of the external field is
small relative to the internal spin-orbit
splitting, differential splitting of s-p
doublets can be used to determine |B].
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Few-T fields have been measured from

160 kA Z-pinch at Weizmann Inst.
Stambulchik, Tsigutken, and Maron
PRL 98, 225001 (2007)

In strong external fields, s-p transitions
form normal Zeeman triplets whose
components reveal B
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Few-100T fields have been measured in
explosive flux-compression experiments
and around magnetic white dwarfs

Garn, Cairn, Thomson, Fowler, RSI 37, 762 (1966)
Reid, Liebert, and Smith, Ap.J. 550, L61 (2001)







Weizmann method:

take advantage of differential splitting

Since Lya?2 (or any np4,, — ns,,, line) is broadened more than Lya1 (or any nps, — ns,,, line)
but has identical Stark, temperature, motional, and opacity broadening, the difference
between the two widths isolates the effect of B field.
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FIG. 1 (color online). Zeeman splitting of the 2S1/2-2P3/2
(solid curves) and the 2S] /Z-ZP1 P (dashed curves) components
of a 25-2P transition, convolved with a small (a) and a dominant
(b) Doppler effect (that is assumed to be the same for the two
components). Profiles of the ¢ and 7 polarizations are given
separately. For the comparison, the intensity of the 2§ i /2-2P1 P
component is scaled up by 2 times, to match the intensity of the
25 1 /2-2‘}’3 /> component.
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FIG. 5 (color online). The Al 4p-4s (5696 & 5722 A) dou-
blet. The line shapes of the two components are peak-normalized
and shifted to a common spectral center. The smooth lines
represent best-fit calculations for B=09T, N,=2X
10 cm 3, and T, = 10 eV.

Stambulchik, Tsigutken, and Maron,
Phys. Rev. Lett. 98, 225001 (2007).




In the strong-field (Paschen-Back) limit, o splitting is R
directly proportional to |B| and m intensity indicates B
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Summary

Current loss is a critical issue for modeling and optimizing target
performance on Z, but measuring the current at the load is
challenging

SVS measurements of Zeeman splitting in optical absorption
features from Na | can provide continuous measurements of
both the magnitude and direction of B fields, and thus current

To obtain measurements over longer durations, we will need to
understand how the droplets vaporize and ionize and explore
options for positioning dopants and the SVS

We are also exploring additional dopants™* to increase the
effective range of the measurement

= Ball 6s-6p lines at 4554 and 4934 A

= |n|5p-6slines at 4102 and 4511 A

*NIST ASD
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