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e Motivation

* Introduction — Objective, Control of Stochastic
Systems

Talk Outline N7

* Review of Karhunen-Loeve Expansion with Markov
Chain Monte Carlo

* Shortcomings of Modeling Methods
 Modification of Markov Chain Monte Carlo

* Applications to Stochastic Frequency Response
Function Modeling
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* Real structures are random — Practically any
measure of behavior reflects randomness

— Among nominally identical structures

Motivation

N4
\,

— From one assembly of a structure to the next

* When we develop a stable controller that is
optimized for one structure in a stochastic
ensemble of nominally identical structures

— It may not have closed-loop stability for all members of
the ensemble

— It will not prove optimal for all members of the ensemble
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Introduction — Objectives

* Develop framework for modeling
stochastic structures in terms of

frequency response functions Kehunen-
(FRF) Expansion
— including some knowledge of the
Physics S
Estimator

Markov Chain
Monte Carlo

Monte Carlo
Simulation &
System
Performance
Analysis

Measured
Realizations

)

2

3

4

Parameterize
measured
data set

!

Estimate joint
PDF of
parameter
vector

!

Generate
synthetic
realizations

!

Compute
empirical
distributions
for simulation

This paper focuses on the modeling framework

The 2" & 3" objectives are addressed in a separate paper
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Subspace
dim, N

Smoothing
Parameter, ¢

Plausibility
Constraints
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% Modeling and Generation of :

FRF Random Process — KLE aes

* Framework for modeling frequency response function
(FRF) needs to accommodate random processes that are

— Nonstationary
— Gaussian/non-Gaussian

* The Karhunen-Loeve expansion (KLE) satisfies these
requirements

e The matrix form of the KLE is

H=vw"?U+pn,

* This is a straightforward SVD or eigenvalue
decomposition

 For MIMO FRFs, we vectorize the FRF matrix and stack
the real and imaginary parts
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Karhunen-Loeve Expansion \~Z

x(f)= 4 (f) + Z v(f)  x w2z oy
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i o s v L The first three can be
R T approximated using
T aman s measured realizations.
[ i The u, are zero-mean, unit
e yvariance, uncorrelated.
I The KL expansion models a random process and its
e realizations as a mean function plus a product of shape
- functions, amplitude functions, and randomizing factors.
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% Modeling and Generation of :

FRF Random Process — KLE SE
* Definitions
H=vww"’U+p,
 H is an nx1, discrete parameter (vector) RP

* Visannx M, orthogonal matrix of the principle
eigenvectors in the autocovariance matrix, C,,,, of

" Cipy = E[(H'HH)(H'HH)T]

¢ Wisan M x M, diagonal matrix of square roots of
principle eigenvalues of the autocovariance matrix
of H (components nonnegative)
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% Modeling and Generation of :

FRF Random Process — KLE S5
* Definitions
H=vw"?U +p,
* U, isthe nx 1, vector mean of the RP H

e Uisan Mx 1, vector of random variables (RV) —
randomizing factors of the model.
— Each RV is zero-mean and unit variance
— RV pairs are uncorrelated
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% Modeling and Generation of :

FRF Random Process — KLE es

* When measured realizations of the RP are available,
then KLE parameters, (V,W“Z,MH), can be estimated.

Denote estimates (\7, wh? ﬁ)
* Approximate KLE model
H = 0W"2U +h

 KLE model can be inverted to evaluate realizations,
u, of U corresponding to realizations, h, of H

u ~W‘1’2vT(hj—ﬁ) j=1...,N

j —
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% Modeling and Generation of :

FRF Random Process — KLE aes

* The realizations u;, j =1,..., N, of the random vector
(RVec) U are used to establish whether the source
Is Gaussian or non-Gaussian

* If Gaussian, realizations of RP, H, can be generated
by generating Gaussian random sequences, U, and
using them in

H = 0W"?U, +h
* If non-Gaussian, realizations of RP, H, can be
generated by generating non-Gaussian random
sequences, U ;, and using them in
H=0W"?U ., +h
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% Modeling and Generation of :

FRF Random Process — KLE aes

* Consider non-Gaussian case — RP H normally non-
Gaussian

 Data, uj,j=1...,N, from the non-Gaussian source, U,
can be used to generate more data from the same
source via Markov Chain Monte Carlo (MCMC)

e How?

— Compute the kernel density estimator of u;, ] =1,...,N
the approximation to the probability density function of
the RV U

— MCMC uses the likelihood (PDF) of U to generate more
realizations of U
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% Modeling and Generation of :

FRF Random Process — KLE es

Denote the generated data u'*", j=1,...,N

gen

* These data lead to generated realizations of the FRF

(gen) ~ ¢ar,d/2,,(gen) | L -
W = OW “ut™™ + h j=1.,N,

* The generated realizations are linear combinations
of the measured realizations

— The span of the generated realizations is limited by the
measured data from which we start

— We need a “good” measured ensemble

* There is no knowledge of the physics (yet)
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Modeling and Generation of
FRF Random Process — KLE

— A "1/2
en
e (£)= h(f) + D, N(f) x g
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Kernel Density Estimator \~/
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The joint PDF of a collection of data can be expressed
with the Kernel Density Estimator (KDE)

ful@) = 30— exp | le— ]

It is the superposition of Gaussian PDFs centered at the
data points

Finds the likelihood of a randomizing vector aroccurring
based on the original

randomizing vectors U; o[ e

. ~ KRl P 1 e 1!\ I~
The smoothing factore =" o} 7, .&" 05| ,,;ze;@,?g;%tm ~
determines how tightly 2l
the distribution is grouped 2 0 2
around the original data Uy
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% Example — Shortcomings of

. : N7
Existing Technique S5
* The KLE doesn’t know about the structure...
— It simply combines basis vectors in random linear
combinations which can give FRFs that aren’t physical
Imag(FRF)s of 20 structures Some synthetic FRFs are “implausible.”
2 Too many extrema
— Therefore implausible
e
L,
(@)
c
£
50 100 500 50 100 500
Freq, Hz Freq, Hz
We use imaginary part of “Measured” Imag(FRF) (blue) and
FRF, only, because real part synthetic Imag(FRF) (green)

is Hilbert transform
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The Plausibility Constraint \Z

. Some identifiable U™, j =1... N, result in
implausible (not probable) h'*" j=1.. N,

— They have some features that we can quantitatively
identify

(gen,NP)

— Denote theseU ,j=1...,N,and h(jge”’NP), j=1..,N

* The remainder of the generated realizations are OK
(i.e., probable) u'*""), j=1..,N,
— Denote them h ) j =1,..,N; , and

* |f the constraint is a hard one, or there are no prior

data, the plausible set of accepted synthetic

realizations is h®" = h(jge”’P), j=1..,N,
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The Plausibility Constraint \~Z
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The plausibility constraint may be fuzzy or we may want
to judge plausibility probabilistically
— This requires prior knowledge of the plausibility likelihood

To diminish chance of non-probable realizations,
generate realizations u(jge”) “as usual”

When a realization is accepted in MCMC analysis, test it
to determine whether it is “probable” or “not probable”

Compute plausibility probability

Ay ()
7’|—U(PR>(U)+ ﬂ'—UmP)(U)

and accept the generated realization with this
probability

Pp. =
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The Plausibility Constraint \~Z

* If no prior likelihoods are available, use a (first)
round of MCMC analysis to construct them

* Generate the synthetic realizations from a 2"¢
MCMC analysis that incorporates the probabilistic
plausibility constraint

* If we use a reduced order KLE, there is no guarantee
that the approximations of the measured ensemble
satisfy the plausibility constraints

— This provides another criterion for selecting the KLE order
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Example — Modified Technique  \/

?zg/ 20
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t:] g Real and Imaginary Parts from the FRFs of the
V6 20 Structure Test Ensemble
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Eigenvalue of C,

AV

ol

Example — FRF KLE Expansion

25

20
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* We consider only the
imaginary part of the FRFs

— The real part is the Hilbert
transform

e Constraint — Number of
peaks = 6

Dominant eigenvalues

ﬁ_ﬁ-i;-{?
Ea

FOF o o o |

10 15
Index

Eigenvalues of C,,

20

Im [H(f)]

15¢

10
sl |
|

-10
-15

-20°

I

! Random Deviates ||
Mean Im [H()]
0 50 100 150 200 250 300 350 400

Frequency (Hz)

Mean and Random Deviates of the
Imaginary Part of the 20 Structure
Test Ensemble
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Example — FRF KLE Expansion N\~

 We considered KLE expansions
with m=19 and m=3
* m=3

— Only 11 approximations of the
original 20 met the order criterion

* m > 15 was required to ensure
the all approximations are
plausible

21

10

Im [H(f)]

-20

-30

-40
0

A

Test Set T
Plausble Vectors (m=3)
—_Implausible Vectors (m=3) ||

50 100 150 200 250 300 350 400
Frequency (Hz)

Approximation of the Test set Im[H]
showing Plausible and Implausible
Realizations
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Example — KDE Space \ 4
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* The fraction of accepted
realizations was set to 0.43

* KLE smoothing factor
0.1<<1.0

— This parameter controls how far
away from the original space
the synthetic FRFs can stray

0.3
— & small - stay close 0.2 /

 Upper bound on 01 s |
implausibility = 0.884 ——

— Original 20 are plausible

Fraction (Implausible)

01 02 03 04 05 06 07 08 09 1
€

Implausibility Ratio
 Suggests € < 0. 5 for KDE (Acceptance Ratio = 0.43)

smoothing parameter

Shows the link between KLE order and KDE smoothing
22 @ ﬁg{}gﬁal
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Example — KDE Space N\~Z

* For a very small KDE smoothing
parameter, the synthetic FRFs are
very close to the original set

— Not very useful

* m = 3 synthetic FRFs seem to
have more damping

15
10k . i -
10 | 200 250 300 350
5 j\ Frequency (Hz)
0 = . . o o
Comparison of Synthesized Realizations
8 5 i
z (Magenta) and Original Set (Black)
L | [m=19, e= 0.1]
-20 “
-25 i —— m=19 H
——m=3
_300 50 100 150 200 250 300 350 400

Frequency (Hz) .
: . . Sand
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i Example — KDE Space

* Variability metric compares
synthetic FRFs to original set

e Synthetic FRFs

05 = ||h" () — ||

j =1 ...an,i =1..M
* Original set

;= ||h(H) — (),
Lj=1..Mi#j

Test Set
(M = 20)

36.29
13.85

Plausible
Reallzatlons

28 24
12.48

Plausible
Realizations

Likelihood of Occurance

Likelihood of Occurance

=

I Test Set
I Piausible Set ]

m=3

10 20 30 40 50 60 70
Realization Variability

I Test Set
I piausible Set

m=19 |

10 20 30 40 50 60 70

Realization Variability
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e Original technique - Karhunen-Loeve expansion
plus kernel density estimator and Markov chain
Monte Carlo — developed to generate
realizations of FRF

— Direct simulation does not work well enough
* The technique was modified to permit exclusion
of realizations with implausible characteristics

— Accommodates inclusion of information on which

generated realizations are improbable and which are
probable

Conclusions \~Z
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Conclusions \~Z
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e Showed various sensitivities of the KLE-KDE-MCMC
process

— Approximation quality is a function of KLE order

* Ordering eigenvalues or summing them may not be sufficient to
ensure a good approximation

— KDE smoothing parameter is linked to KLE order

— KDE smoothing parameter is linked to plausibility ratio
* Plausibility provides another criterion for setting this parameter
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