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Talk Outline 

• Motivation 

• Introduction – Objective, Control of Stochastic 
Systems 

• Review of Karhunen-Loeve Expansion with Markov 
Chain Monte Carlo 

• Shortcomings of Modeling Methods 

• Modification of Markov Chain Monte Carlo 

• Applications to Stochastic Frequency Response 
Function Modeling 
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Motivation 

• Real structures are random – Practically any 
measure of behavior reflects randomness  

– Among nominally identical structures 

– From one assembly of a structure to the next 

• When we develop a stable controller that is 
optimized for one structure in a stochastic 
ensemble of nominally identical structures 

– It may not have closed-loop stability for all members of 
the ensemble 

– It will not prove optimal for all members of the ensemble 
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Introduction – Objectives 

• Develop framework for modeling 
stochastic structures in terms of 
frequency response functions 
(FRF) 
– including some knowledge of the 

physics 

• Estimate probability of stability 
of random, controlled structures 
for a given controller 

• Estimate probability of satisfying 
a closed-loop performance 
objective  for random structures 
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This paper focuses on the modeling framework 
The 2nd & 3rd objectives are addressed in a separate paper 
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Modeling and Generation of 
FRF Random Process – KLE 

• Framework for modeling frequency response function 
(FRF) needs to accommodate random processes that are 
– Nonstationary 

– Gaussian/non-Gaussian 

• The Karhunen-Loeve expansion (KLE) satisfies these 
requirements 

• The matrix form of the KLE is  

 
 

• This is a straightforward SVD or eigenvalue 
decomposition 

• For MIMO FRFs, we vectorize the FRF matrix and stack 
the real and imaginary parts 

 5 

H

21 μUvwH  /



6 

Karhunen-Loeve Expansion 

 fx   fX   
k

k fv 21/
k

w ku

The KL expansion models a random process and its 

realizations as a mean function plus a product of shape 

functions, amplitude functions, and randomizing factors. 

The first three can be 

approximated using 

measured realizations. 

The uk are zero-mean, unit 

variance, uncorrelated. 
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Modeling and Generation of 
FRF Random Process – KLE 

• Definitions 

 

• H  is an nx1, discrete parameter (vector) RP 

• v is an n x M, orthogonal matrix of the principle 
eigenvectors in the autocovariance matrix,        , of 
H 

 

•   is an M x M, diagonal matrix of square roots of 
principle eigenvalues of the autocovariance matrix 
of H (components nonnegative) 
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Modeling and Generation of 
FRF Random Process – KLE 

• Definitions 

 

•       is the n x 1, vector mean of the RP H 

• U is an M x 1, vector of random variables (RV) – 
randomizing factors of the model.  

– Each RV is zero-mean and unit variance 

– RV pairs are uncorrelated 
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Modeling and Generation of 
FRF Random Process – KLE 

• When measured realizations of the RP are available, 
then KLE parameters,                     , can be estimated.  
  

Denote estimates  

• Approximate KLE model 

 

• KLE model can be inverted to evaluate realizations, 
u, of U corresponding to realizations, h, of H 
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Modeling and Generation of 
FRF Random Process – KLE 

• The realizations                      , of the random vector 
(RVec)  U are used to establish whether the source 
is Gaussian or non-Gaussian 

• If Gaussian, realizations of RP, H, can be generated 
by generating Gaussian random sequences,      , and 
using them in  

 

• If non-Gaussian, realizations of RP, H, can be 
generated by generating non-Gaussian random 
sequences,        , and using them in  
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hUŵv̂H 21  nG

/

nGU



11 

Modeling and Generation of 
FRF Random Process – KLE 

• Consider non-Gaussian case – RP H normally non-
Gaussian 

• Data,                     , from the non-Gaussian source, U, 
can be used to generate more data from the same 
source via Markov Chain Monte Carlo (MCMC) 

• How? 

– Compute the kernel density estimator of                        
the approximation to the probability density function of 
the RV U 

– MCMC uses the likelihood (PDF) of U to generate more 
realizations of U 

11 

N,...,j,j 1u

Njj ,...,1,u 



12 

Modeling and Generation of 
FRF Random Process – KLE 

• Denote the generated data  

• These data lead to generated realizations of the FRF 

 

 

• The generated realizations are linear combinations 
of the measured realizations 

– The span of the generated realizations is limited by the 
measured data from which we start 

– We need a “good” measured ensemble 

• There is no knowledge of the physics (yet) 
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Modeling and Generation of 
FRF Random Process – KLE 
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Synthetic 
FRFs 
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Kernel Density Estimator 

• The joint PDF of a collection of data can be expressed 
with the Kernel Density Estimator (KDE) 

 

 

• It is the superposition of Gaussian PDFs centered at the 
data points 

• Finds the likelihood of a randomizing vector a occurring 
based on the original  
randomizing vectors uj 

• The smoothing factor e  
determines how tightly  
the distribution is grouped  
around the original data 
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Example – Shortcomings of 
Existing Technique 

• The KLE doesn’t know about the structure… 

– It simply combines basis vectors in random linear 
combinations which can give FRFs that aren’t physical 

 

15 

“Measured” Imag(FRF) (blue) and 
synthetic Imag(FRF) (green) 

We use imaginary part of 
FRF, only, because real part 
is Hilbert transform 

Some synthetic FRFs are “implausible.” 
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The Plausibility Constraint 

• Some identifiable                           result in 
implausible (not probable)             

– They have some features that we can quantitatively 
identify 

– Denote these                                      , and 

• The remainder of the generated realizations are OK 
(i.e., probable) 

– Denote them                                     , and 

• If the constraint is a hard one, or there are no prior 
data,  the plausible set of accepted synthetic 
realizations is  
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The Plausibility Constraint 

• The plausibility constraint may be fuzzy or we may want 
to judge plausibility probabilistically 
– This requires prior knowledge of the plausibility likelihood  

• To diminish chance of non-probable realizations, 
generate realizations           “as usual” 

• When a realization is accepted in MCMC analysis, test it 
to determine whether it is “probable” or “not probable” 

• Compute plausibility probability 
 
 
and accept the generated realization with this 
probability 
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The Plausibility Constraint 

• If no prior likelihoods are available, use a (first) 
round of MCMC analysis to construct them 

• Generate the synthetic realizations from a 2nd 
MCMC analysis that incorporates the probabilistic 
plausibility constraint 

• If we use a reduced order KLE, there is no guarantee 
that the approximations of the measured ensemble 
satisfy the plausibility constraints 

– This provides another criterion for selecting the KLE order 
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Example – Modified Technique 
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Example – FRF KLE Expansion 

• We consider only the 
imaginary part of the FRFs 
– The real part is the Hilbert 

transform 

• Constraint – Number of 
peaks = 6 
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Example – FRF KLE Expansion 

• We considered KLE expansions 
with m=19 and m=3 

• m=3 
– Only 11 approximations of the 

original 20 met the order criterion 

• m > 15 was required to ensure 
the all approximations are 
plausible 
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Example – KDE Space 

• The fraction of accepted 
realizations was set to 0.43 

• KLE smoothing factor 
 
– This parameter controls how far 

away from the original space 
the synthetic FRFs can stray 

– e small – stay close 

• Upper bound on 
implausibility = 0.884 
– Original 20 are plausible 

• Suggests  𝜺 ≤ 𝟎. 𝟓 for KDE 
smoothing parameter 

Implausibility Ratio  
(Acceptance Ratio = 0.43) 
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Example – KDE Space 

• For a very small KDE smoothing 
parameter, the synthetic FRFs are 
very close to the original set 
– Not very useful 

• m = 3 synthetic FRFs seem to 
have more damping 
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Example – KDE Space 

• Variability metric compares 
synthetic FRFs to original set 

• Synthetic FRFs 
  

 

• Original set 
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Conclusions 

• Original technique - Karhunen-Loeve expansion 
plus kernel density estimator and Markov chain 
Monte Carlo – developed to generate 
realizations of FRF 

– Direct simulation does not work well enough 

• The technique was modified to permit exclusion 
of realizations with implausible characteristics 

– Accommodates inclusion of information on which 
generated realizations are improbable and which are 
probable 
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Conclusions 

• Showed various sensitivities of the KLE-KDE-MCMC 
process 

– Approximation quality is a function of KLE order 
• Ordering eigenvalues or summing them may not be sufficient to 

ensure a good approximation 

– KDE smoothing parameter is linked to KLE order 

– KDE smoothing parameter is linked to plausibility ratio 
• Plausibility provides another criterion for setting this parameter 
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