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Fundamentals of Contact 

ECR     Maximize Junction Growth 

Friction    Minimize Metal-to-Metal Contact 



Hard Au Platings 
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• Friction and ECR are two 

fundamentally opposing phenomena 

• Typical industry practice is to apply a 

thin deformable layer on an alloy 

surface 

• Electroplated Au hardened with 

minute alloying elements (e.g. Ni, 

Co) is the material of choice 

Issues and Challenges 

• Long term materials aging 

• Limit on the choice of 

hardeners 

• Quality control issues with 

electroplating (non-technical)  



Both ECR and Friction are systems properties 
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Four-Point Probe ECR-Friction Testing: Pin-

on-Disk 

Pin Head 



ECR Tester 

Data Acquisition 

Up to 2000 mA 

1 mN to 1.5 N 

 



Ag-Pd-Cu Alloy Pin on Hard Au 

Transfer film 
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Red = Au 

Green = Ag-Pd 

Blue = Cu-Pd-Ni 

Ag-Pd-Cu Alloy on Hard Au: Spectral Image 
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Spectral Images of Transfer Film: Au-Cu-Ag 

Alloy on Au 
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Triad E-Beam Deposition 

• Triad electron gun for E-beam 

evaporation 

• Co-deposition of ternary alloy thin films 

• Shutter in front of substrate for 

consistent composition 

• Substrate rotation for improved 

uniformity  

• Line of sight shields on QCMs 

eliminate cross-talk 
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independent 
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Sputter Deposition 
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Sputter Co-Deposition System 

Two 2” sputter targets Sputter guns at 90° 

Substrate at 45° 

to both 
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during dep. 



Physical Vapor Deposition (PVD) 
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• Target material removed by kinetic 

energy of inert ions 

• Requires plasma ignition for ionization 

of sputter gas (Ar)  

• Minimum energy for ignition limits 

deposition rate ratio ~ 50:1 (2%) 

• Good control over film properties 

(pressure, power, biasing, temperature) 

• Target material vaporized by thermal 

energy from electron beam 

• Terrific rate control with feedback from 

QCM 

• Can deposit at extremely slow rates 

(ppm level composition control) 



Bulk Resistivity of Nanocomposite 
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Electron Backscatter Diffraction 

EBSD  

E-beam films 

Pure Au Au-0.1% ZnO 



ECR (Static) and XTEM 
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Concluding Thoughts 

• ECR and Friction are systems properties 

• Fundamental understanding of the formation, chemistry (at the 

nanoscale) of transfer films is the key towards the development 

of a robust ECR material 
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