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Motivation: Understand Dislocation @i
Behavior in Tantalum

= We seek to develop a plasticity model for bcc metals based on
accurate dislocation behavior

= <111> screw dislocations dominate due to large Peierls Stresses

= Slip is strongly temperature and orientation dependent
= Multiple slip planes: {110}, {112}, {123}, wavy

= High lattice resistance is due the non-planar nature of the screw
dislocation core in bcc metals (Hirsch, 1960; Caillard and Martin,
1975).

= The configuration of a dislocation core has not been confirmed
experimentally, but has been identified using atomistic
modeling and simulation.



Dislocation Core Structure and Slip Behavior

i\

Compact Polarized
Non-degenerate Degenerate

Split
(planar)

= Compact core results in {110} slip (Duesbery et al, 1973).

= Polarized core results in {112} slip via motion on alternating

{110} planes (Duesbery et al, 1973).

= Also observed in simulation is a planar or split core — core
appears “split” between two non-planar core locations,
spread on a single {110} plane. Split core is metastable in
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classical potential atomistics (e.g. Gordon et al, 2010); unstable in 3
many DFT calculations (Ventelon et al, 2007; Weinberger et al, 2013).



Slip behavior differs with )
dislocation core structure

= Polarization of the dislocation core does not cover all atomistic
observations of {112} slip. Nearly all simulation with classical
potentials (e.g. Duesbery and Vitek, 1998; Anglade et al, 2005) and some
ab initio calculations (Woodward and Rao, 2002; Segall et al, 2003)
report {112} slip occurring from a compact core.

= Experiments indicate that fundamental slip in Ta is on {110}
planes (Takeuchi and Maeda, 1977; Tang et al, 1998).

= We seek to establish the underlying cause for empirical
potentials exhibiting {112} slip in atomistic simulation.

= We perform atomic simulations of single dislocation slip in Ta
= Observe how dislocation reacts to stress and temperature

= Measure critical resolved shear stress (CRSS) to activate motion
= Determine necessary information in developing a larger scale model




Thin Simulation Design
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Single dislocation in 200 X 200 X 22.9 A system

Periodic in z-direction, outside x- and y-boundaries fixed
Strain applied according to anisotropic elasticity solution
Middle of system relaxed with a force minimization algorithm
Five classical potentials investigated: FS!1, EAM[2-4], ADPI3]
Increase load and characterize and measure any changes
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Adapted from [6]
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Critical Resolved Shear Stress ) .

= Stress to activate
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Dislocation Core Transformations

= CRSS discontinuities related to changing core structures
(positions) and other critical events

= CRSS values obtained for ADP are close to ab-initio results by
Woodward and Rao
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[1] C. Woodward and S.I. Rao, Phys Rev Lett 88, 216402 (2002).




All Potentials Tested Show {112} Slip @&

CRSS/C44
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(-1-12) Zero Stress Slip Pathway @

Nudged Elastic Band calculations of the reaction pathway and barriers

Reaction Pathways For Compact Core to Slip
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{110} glide steps on two different planes resulting in total {112} slip
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Stress Dependent Barriers

= Four unique barriers along slip pathway

= Activation enthalpy, AH, given by maximum energy along pathway

= Max resolved shear stress along (-101) — Split B favored by driving force
= Critical stress for Compact to Split A less than Compact to Split B!

Transformation Pathways at 6,..,/C,, = 0.0074
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Activation Enthalpies
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(-101) vs (-1-12) Slip Processes ) £
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Barrier Dependent CRSS

= Transformation and slip
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Larger Simulations ).

= Systems of roughly 208 X 208 X 286 A
created containing a single screw
dislocation

= Surfaces in x- and y-directions free, z-
direction periodic

= Shear stress added to system by
adding a force in the z-direction to
atoms in regions near the y surfaces

Siﬁﬁiiﬁﬁ;iiiiiiﬁii;ﬁ;iim»nm)»m)m»m»

= System is updated dynamically with
NVT integration

"= Force increased incrementally until
dislocation moves
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High Stress, 0.01 K Simulations ) .

= Split core transformation observed
= Observed events match with thin simulations
Alternating {110} motion for y = -30°
= Zero stress pathway S,-C-S;-C-S,
= Motion exactly follows (-1-12) for y = 0°
= Extended core pathway and short kink
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Low Stress, 300 K Simulations ) .

= Split core is metastable state

= Nearly equal number of (0-11) and (-101) glide steps resulting
in a cumulative (-1-12) slip

"= No slip observed for y = 30°up to 1 GPa shear stress

Y Displacement (A)

X displacement (A)
- _________________________________________________________________________________________________________|



Conclusions ) o,

Complex CRSS behavior due to multiple stress dependent
barriers along slip pathway.

{112} slip is the result of {110} motion on 2 different planes
through multiple compact and split core positions.

Activation enthalpy for moving compact to split along the
(0-11) plane is smaller than a similar motion along the
(-101) plane even though the resolved shear stress is
greater along the (-101) plane. This counter-intuitive
behavior is due to the stability of the split core structure.

At finite temperatures, kink motion follows the same low-
energy paths between split core configurations.

Similar calculations have been done for bcc Iron using a
potential for which the split core structure is unstable.
{110} slip is observed, and the fitting of a single crystal
vield law is in progress. 8



