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Mo2va2on:	
  Understand	
  Disloca2on	
  
Behavior	
  in	
  Tantalum	
  	
  
§  We	
  seek	
  to	
  develop	
  a	
  plas2city	
  model	
  for	
  bcc	
  metals	
  based	
  on	
  

accurate	
  disloca2on	
  behavior	
  
§  <111>	
  screw	
  disloca2ons	
  dominate	
  due	
  to	
  large	
  Peierls	
  Stresses	
  
§  Slip	
  is	
  strongly	
  temperature	
  and	
  orienta2on	
  dependent	
  
§  Mul2ple	
  slip	
  planes:	
  {110},	
  {112},	
  {123},	
  wavy	
  
	
  

§  High	
  laTce	
  resistance	
  is	
  due	
  the	
  non-­‐planar	
  nature	
  of	
  the	
  screw	
  
disloca2on	
  core	
  in	
  bcc	
  metals	
  (Hirsch,	
  1960;	
  Caillard	
  and	
  Mar2n,	
  
1975).	
  

§  The	
  configura2on	
  of	
  a	
  disloca2on	
  core	
  has	
  not	
  been	
  confirmed	
  
experimentally,	
  but	
  has	
  been	
  iden2fied	
  using	
  atomis2c	
  
modeling	
  and	
  simula2on.	
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Disloca2on	
  Core	
  Structure	
  and	
  Slip	
  Behavior	
  

3	
  

§  Compact	
  core	
  results	
  in	
  {110}	
  slip	
  (Duesbery	
  et	
  al,	
  1973).	
  
§  Polarized	
  core	
  results	
  in	
  {112}	
  slip	
  via	
  mo2on	
  on	
  alterna2ng	
  

{110}	
  planes	
  (Duesbery	
  et	
  al,	
  1973).	
  
§  Also	
  observed	
  in	
  simula2on	
  is	
  a	
  planar	
  or	
  split	
  core	
  –	
  core	
  

appears	
  “split”	
  between	
  two	
  non-­‐planar	
  core	
  loca2ons,	
  
spread	
  on	
  a	
  single	
  {110}	
  plane.	
  Split	
  core	
  is	
  metastable	
  in	
  
classical	
  poten2al	
  atomis2cs	
  (e.g.	
  Gordon	
  et	
  al,	
  2010);	
  unstable	
  in	
  
many	
  DFT	
  calcula2ons	
  (Ventelon	
  et	
  al,	
  2007;	
  Weinberger	
  et	
  al,	
  2013).	
  

Compact  
Non-degenerate 

Polarized 
Degenerate 

Split 
(planar) 



Slip	
  behavior	
  differs	
  with	
  	
  
disloca2on	
  core	
  structure	
  
§  Polariza2on	
  of	
  the	
  disloca2on	
  core	
  does	
  not	
  cover	
  all	
  atomis2c	
  

observa2ons	
  of	
  {112}	
  slip.	
  Nearly	
  all	
  simula2on	
  with	
  classical	
  
poten2als	
  (e.g.	
  Duesbery	
  and	
  Vitek,	
  1998;	
  Anglade	
  et	
  al,	
  2005)	
  and	
  some	
  
ab	
  ini&o	
  calcula2ons	
  (Woodward	
  and	
  Rao,	
  2002;	
  Segall	
  et	
  al,	
  2003)	
  
report	
  {112}	
  slip	
  occurring	
  from	
  a	
  compact	
  core.	
  

§  Experiments	
  indicate	
  that	
  fundamental	
  slip	
  in	
  Ta	
  is	
  on	
  {110}	
  
planes	
  (Takeuchi	
  and	
  Maeda,	
  1977;	
  Tang	
  et	
  al,	
  1998).	
  

§  We	
  seek	
  to	
  establish	
  the	
  underlying	
  cause	
  for	
  empirical	
  
poten'als	
  exhibi'ng	
  {112}	
  slip	
  in	
  atomis'c	
  simula'on.	
  

§  We	
  perform	
  atomic	
  simula'ons	
  of	
  single	
  disloca'on	
  slip	
  in	
  Ta	
  
§  Observe	
  how	
  disloca'on	
  reacts	
  to	
  stress	
  and	
  temperature	
  
§  Measure	
  cri'cal	
  resolved	
  shear	
  stress	
  (CRSS)	
  to	
  ac'vate	
  mo'on	
  
§  Determine	
  necessary	
  informa'on	
  in	
  developing	
  a	
  larger	
  scale	
  model	
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Thin	
  Simula2on	
  Design	
  
§  Single	
  disloca2on	
  in	
  200	
  X	
  200	
  X	
  22.9	
  Å	
  system	
  
§  Periodic	
  in	
  z-­‐direc2on,	
  outside	
  x-­‐	
  and	
  y-­‐boundaries	
  fixed	
  
§  Strain	
  applied	
  according	
  to	
  anisotropic	
  elas2city	
  solu2on	
  
§  Middle	
  of	
  system	
  relaxed	
  with	
  a	
  force	
  minimiza2on	
  algorithm	
  
§  Five	
  classical	
  poten2als	
  inves2gated:	
  FS[1],	
  EAM[2-­‐4],	
  ADP[5]	
  

§  Increase	
  load	
  and	
  characterize	
  and	
  measure	
  any	
  changes	
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Cri2cal	
  Resolved	
  Shear	
  Stress	
  
§  Stress	
  to	
  ac2vate	
  

unrestricted	
  
disloca2on	
  mo2on	
  

§  Like	
  to	
  understand/fit	
  
correct	
  behavior	
  
§  Devia2on	
  from	
  

Schmid’s	
  law	
  	
  
§  Twinning/an2-­‐
twinning	
  {112}	
  
asymmetry	
  	
  

§  Groger’s	
  model	
  

§  (-­‐1-­‐12)	
  slip	
  instead	
  of	
  
expected	
  (-­‐101)	
  slip	
  

§  Discon2nui2es	
  in	
  CRSS	
  
vs.	
  orienta2on	
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Disloca2on	
  Core	
  Transforma2ons	
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Compact Split Extended Twin 

§  CRSS	
  discon2nui2es	
  related	
  to	
  changing	
  core	
  structures	
  
(posi2ons)	
  and	
  other	
  cri2cal	
  events	
  

§  CRSS	
  values	
  obtained	
  for	
  ADP	
  are	
  close	
  to	
  ab-­‐ini&o	
  results	
  by	
  
Woodward	
  and	
  Rao	
  

[1] C. Woodward and S.I. Rao, Phys Rev Lett 88, 216402 (2002). 
 



All	
  Poten2als	
  Tested	
  Show	
  {112}	
  Slip	
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§  Poten2als	
  available	
  at	
  project	
  start	
  
were	
  EAM-­‐type	
  variants	
  

§  New	
  poten2als	
  have	
  since	
  been	
  created	
  
that	
  have	
  yet	
  to	
  be	
  evaluated:	
  
§  MGPT	
  by	
  Moriarty	
  et	
  al.	
  (2012)	
  
§  MEAM	
  by	
  Fellinger	
  and	
  Wiklins	
  (2013)	
  
§  SNAP	
  by	
  Thompson	
  et	
  al.	
  (under	
  development)	
  

§  BOP	
  -­‐	
  ?	
  



(-­‐1-­‐12)	
  Zero	
  Stress	
  Slip	
  Pathway	
  
Nudged Elastic Band calculations of the reaction pathway and barriers 



(-­‐1-­‐12)	
  Zero	
  Stress	
  Slip	
  Pathway	
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{110} glide steps on two different planes resulting in total {112} slip 

Split A on (0-11) 

Split B on (-101) 



Stress	
  Dependent	
  Barriers	
  
§  Four	
  unique	
  barriers	
  along	
  slip	
  pathway	
  
§  Ac2va2on	
  enthalpy,	
  ΔH,	
  given	
  by	
  maximum	
  energy	
  along	
  pathway	
  
§  Max	
  resolved	
  shear	
  stress	
  along	
  (-­‐101)	
  –	
  Split	
  B	
  favored	
  by	
  driving	
  force	
  
§  Cri2cal	
  stress	
  for	
  Compact	
  to	
  Split	
  A	
  less	
  than	
  Compact	
  to	
  Split	
  B!	
  



Ac2va2on	
  Enthalpies	
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§  Ac2va2on	
  enthalpy	
  
for	
  Compact	
  to	
  
Split	
  A	
  less	
  than	
  
Compact	
  to	
  Split	
  B	
  
at	
  all	
  stresses	
  and	
  
for	
  all	
  orienta2ons	
  



(-­‐101)	
  vs	
  (-­‐1-­‐12)	
  Slip	
  Processes	
  
§  Disloca2on	
  starts	
  as	
  a	
  compact	
  core	
  

at	
  a	
  C	
  posi2on	
  	
  
§  First	
  mo2on	
  depends	
  on	
  if	
  cri2cal	
  

stress	
  for	
  C→SA or C→SB is lower: 
§  If C→SB is lower 

§  (-101) slip will occur when C→SB and 
SB→C are activated 

§  If C→SA is lower 
§  Dislocation will transform by shifting to 

SA along the (0-11) plane 
§  After transforming, only SA→C possible 

along slip pathway 
§  (-1-12) slip occurs if SA→C is activated 

or bypassed 



Barrier	
  Dependent	
  CRSS	
  

§  Transforma2on	
  and	
  slip	
  
predicted	
  by	
  barrier	
  
cri2cal	
  stresses	
  

§  Barrier	
  associated	
  with	
  
CRSS	
  changes	
  with	
  
orienta2on	
  

§  Different	
  cri2cal	
  barrier	
  
for	
  (-­‐101)	
  and	
  (-­‐1-­‐12)	
  slip	
  

§  Model	
  for	
  slip	
  at	
  0	
  K	
  
cannot	
  assume	
  only	
  one	
  
cri2cal	
  barrier	
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Larger	
  Simula2ons	
  

§  Systems	
  of	
  roughly	
  208	
  X	
  208	
  X	
  286	
  Å 
created	
  containing	
  a	
  single	
  screw	
  
disloca2on	
  

§  Surfaces	
  in	
  x-­‐	
  and	
  y-­‐direc2ons	
  free,	
  z-­‐
direc2on	
  periodic	
  

§  Shear	
  stress	
  added	
  to	
  system	
  by	
  
adding	
  a	
  force	
  in	
  the	
  z-­‐direc2on	
  to	
  
atoms	
  in	
  regions	
  near	
  the	
  y	
  surfaces	
  

§  System	
  is	
  updated	
  dynamically	
  with	
  
NVT	
  integra2on	
  

§  Force	
  increased	
  incrementally	
  un2l	
  
disloca2on	
  moves	
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High	
  Stress,	
  0.01	
  K	
  Simula2ons	
  
§  Split	
  core	
  transforma2on	
  observed	
  
§  Observed	
  events	
  match	
  with	
  thin	
  simula2ons	
  
§  Alterna2ng	
  {110}	
  mo2on	
  for	
  χ	
  =	
  -­‐30° 

§  Zero	
  stress	
  pathway	
  SA-­‐C-­‐SB-­‐C-­‐SA	
  
§  Mo2on	
  exactly	
  follows	
  (-­‐1-­‐12)	
  for	
  χ	
  =	
  0° 

§  Extended	
  core	
  pathway	
  and	
  short	
  kink	
  
§  Twinning	
  observed	
  for	
  χ	
  =	
  30° 

 

  



Low	
  Stress,	
  300	
  K	
  Simula2ons	
  

 

 

§  Split	
  core	
  is	
  metastable	
  state	
  
§  Nearly	
  equal	
  number	
  of	
  (0-­‐11)	
  and	
  (-­‐101)	
  glide	
  steps	
  resul2ng	
  

in	
  a	
  cumula2ve	
  (-­‐1-­‐12)	
  slip	
  
§  No	
  slip	
  observed	
  for	
  χ	
  =	
  30°up	
  to	
  1	
  GPa	
  shear	
  stress	
  



Conclusions	
  
§  Complex	
  CRSS	
  behavior	
  due	
  to	
  mul2ple	
  stress	
  dependent	
  

barriers	
  along	
  slip	
  pathway.	
  
§  {112}	
  slip	
  is	
  the	
  result	
  of	
  {110}	
  mo2on	
  on	
  2	
  different	
  planes	
  

through	
  mul2ple	
  compact	
  and	
  split	
  core	
  posi2ons.	
  	
  	
  
§  Ac2va2on	
  enthalpy	
  for	
  moving	
  compact	
  to	
  split	
  along	
  the	
  	
  	
  	
  

(0-­‐11)	
  plane	
  is	
  smaller	
  than	
  a	
  similar	
  mo2on	
  along	
  the	
  
(-­‐101)	
  	
  	
  	
  plane	
  even	
  though	
  the	
  resolved	
  shear	
  stress	
  is	
  
greater	
  along	
  the	
  (-­‐101)	
  plane.	
  	
  This	
  counter-­‐intui2ve	
  
behavior	
  is	
  due	
  to	
  the	
  stability	
  of	
  the	
  split	
  core	
  structure.	
  	
  

§  At	
  finite	
  temperatures,	
  kink	
  mo2on	
  follows	
  the	
  same	
  low-­‐
energy	
  paths	
  between	
  split	
  core	
  configura2ons.	
  

§  Similar	
  calcula2ons	
  have	
  been	
  done	
  for	
  bcc	
  Iron	
  using	
  a	
  
poten2al	
  for	
  which	
  the	
  split	
  core	
  structure	
  is	
  unstable.	
  
{110}	
  slip	
  is	
  observed,	
  and	
  the	
  fiTng	
  of	
  a	
  single	
  crystal	
  
yield	
  law	
  is	
  in	
  progress.	
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