



# Scalable Models for Large Graphs

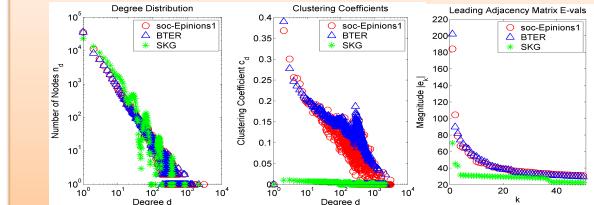
## Why Model Graphs?

### Enable sharing of surrogate data

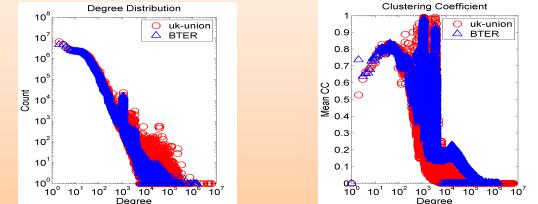
- Computer network traffic
- Social networks
- Financial transactions

### Testing graph algorithms

- Scalability
- Versatility
- Performance characterization
- Verification & validation
- Anomaly detection
- Generative process
- Community structure
- Comparison
- Evolution


### Insight into...

- Anomaly detection
- Generative process
- Community structure
- Comparison
- Evolution


## Why Another Model?

| Type                              | Deg. Dist.  | Clust. Coeff.       | Fitting                     | Scalable Generation? | Params                   |
|-----------------------------------|-------------|---------------------|-----------------------------|----------------------|--------------------------|
| Incremental (PA, FF)              | Qualitative | Qualitative         | Expensive                   | No                   | Few                      |
| Markov Chain/ Rewiring (dk, 2.5K) | Exact       | Near Exact for 2.5K | Compute DD/JDD and maybe CC | No                   | DD/JDD, plus CC for 2.5K |
| CL,EC                             | Near exact  | No                  | Compute DD                  | Yes                  | DD                       |
| SKG/RMAT                          | No          | No                  | Expensive                   | Yes                  | Few                      |
| BTER                              | Near exact  | Near Exact          | Compute DD & CC             | Yes                  | DD & CC                  |

## BTER can match properties of real world graphs



## BTER is Scalable



## BTER Hadoop Results: uk-union (4.6B edges)

## Theory behind Block Two-level Erdős-Rényi (BTER) Model

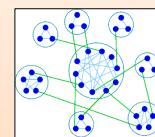
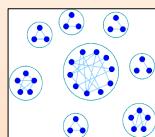
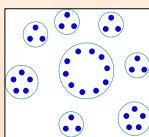
Random graph:

- (1) Formed according to CL Model
- (2) "High" clustering coefficient



*Thm:* Must contain a "substantive" subgraph that is a **dense** Erdős-Rényi graph.






A heavy-tailed network with a high clustering coefficient contains many Erdős-Rényi **affinity blocks**. (The distribution of the block sizes is also heavy tailed.)

**Chung-Lu (CL) Model**  
 $G = (V, E) \setminus \{d_i\}_{i \in V}$  (prescribed)  
 $\text{Prob } ((i, j) \in E \mid i, j, \in V) \propto d_i \cdot d_j$

**Global Clustering Coefficient**  
 $c = \frac{3 \times \# \text{ triangles in graph}}{\# \text{ wedges in graph}}$

**Dense Erdős-Rényi Subgraph**  
 $\bar{V} \subset V, \bar{E} \subset E$   
 $\text{Prob } ((i, j) \in \bar{E} \mid i, j \in \bar{V}) \propto \text{constant}$

## Theory describes the structure and enable generation



**Preprocessing**

- Create affinity blocks of nodes with (nearly) same degree, determined by **degree distribution**
- Connectivity per block based on **clustering coefficient**
- For each node, compute desired
  - within-block degree
  - excess degree

**Phase 1**

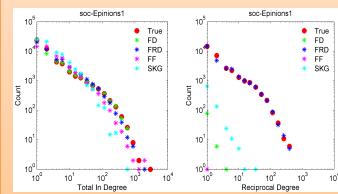
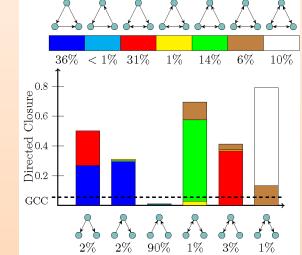
- Erdős-Rényi graphs in each block
- Need to insert extra links to insure enough **unique** links per block

$w_b = \binom{n_b}{2} \ln \left( \frac{1}{1 - p_b} \right)$

**Phase 2**

- CL model on excess degree (a sort of weighted Erdős-Rényi)
- Creates connections across blocks

*Occurring independently*



## Modeling Directed Graphs

### Degree Analysis

One-Way Edge      Reciprocal Edge

| Graph         | # reciprocal edges |
|---------------|--------------------|
| Soc-Epinions  | 0.405              |
| Web-NotreDame | 0.517              |
| youtube       | 0.791              |
| flickr        | 0.624              |
| LiveJournal   | 0.735              |

### Triadic Analysis



### References:

- C. Seshadhri, A. Pinar, and T. G. Kolda. **An In-Depth Analysis of Stochastic Kronecker Graphs**, J. ACM, Vol. 60(2), pp:13:1–13:32, 2013.
- C. Seshadhri, T.G. Kolda, and A. Pinar. **Community structure and scale-free collections of Erdos-Renyi graphs**, Phys. Review E, Vol. 85(5), 2012.
- T. G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri, **A Scalable Generative Graph Model with Community Structure**, arXiv:1302.6636.
- C. Seshadhri, A. Pinar, N. Durak, and T.G. Kolda, **Directed closure measures for networks with reciprocity**, arXiv:1302.6220.
- N. Durak, T.G. Kolda, A. Pinar, and C. Seshadhri, **A Scalable Null Model to Match All Degree Distributions: In, Out, and Reciprocal**, Proc. IEEE Network Science, 2013.