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White Dwarfs ≈ Retired Stars 

• End point of stellar evolution for most stars, 
including our Sun 

• Compact object 

– ~ 2/3 MSun, ~ 1 REarth 

– Electron degenerate core, stratified envelope 

• No nuclear fusion in core 

– Electron degeneracy pressure provides support 
against gravity 

– Star exponentially cools with time 
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White Dwarf 
Atmospheric Parameters 

Illustration: Harvard-Smithsonian Center for 
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Dark Energy 

• Effective temperature (Teff) 
• Surface gravity (log g) 
• Composition, Magnetism 



• Compare observed spectra with synthetic spectra 
from WD atmosphere models 

• The spectroscopic method (see, e.g., Bergeron et al. 1992) is: 
– Precise 

• δTeff/Teff ~ 5% 

• δlog g/log g ~ 1% 

– Widely-used; more 
than 30,000 WDs 
• Palomar-Green Survey 

• Sloan Digital Sky Survey 

• SPY 

• HETDEX 

 
Figure from Hermes et al. (2011): KPNO spectrum of WD J1916+3938 

Determining WD Atmospheric Parameters 



The Spectroscopic Method Isn’t Perfect? 

• The “Log g Upturn” 

– Unphysical mass increase at lower Teff 

– Appears in all large  
spectroscopic surveys 

Figure from Falcon et al. (2010a): 419 DA WDs from SPY Figure from Kepler et al. (2007): 3595 DA WDs from SDSS DR4 
and 348 DA WDs from the PG survey (Liebert et al. 2005) 



The Spectroscopic Method Isn’t Perfect? 

• Mean mass discrepancy at all Teff 

– From gravitational redshift of ensemble of WDs 
(Falcon et al. 2010a) 

Figure from Falcon et al. (2010a): Spectroscopic mass distribution from SPY.  The 
means of the spectroscopic masses (vertical lines) differ significantly from the mean 

mass from gravitational redshift (vertical, blue line). 



The Spectroscopic Method Isn’t Final? 

• WD atmosphere modeling 
remains an active area of 
research 

• Recent “improved” Stark 
broadened H line profiles 
(Tremblay & Bergeron 2009) 

resulted in systematic 
increases: 
– ΔTeff ~ 200 – 1000 K 

– Δlog g ~ 0.04 – 0.1 dex 

• Inclusion of opacity of H 
Ly-α significantly improved 
cool WD models (Kowalski & 
Saumon 2006)  

Figure from Tremblay & Bergeron (2009): Difference in fit results using WD 
atmosphere models with improved Stark broadened line profiles 
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Courtesy of P.-E. Tremblay: Theoretical hydrogen line profiles as a function of distance from the line center, Δλ. The plasma 
conditions assumed are T = 10,000 K and ne = 1017 cm−3. The recent calculations of Tremblay & Bergeron are shown as the 

solid (red) lines, and the previous Vidal-Cooper-Smith (VCS) calculations are shown as the dashed (black) lines. 



What’s Been Done (in the Lab) 

• Driving the experiments 

– `60s, `70s 

• Theory 

– `80s and on 

• Theory 

• Diagnostic methods 

– Now 

• Theory 

• Diagnostic methods 

• Astronomical observation 

 

Year Authors Plasma Source 

1962 Berg et al. Shock tube 

1965 McLean et al. Shock tube 

1967 Hill et al. Arc discharge 

1968 Morris et al. Arc discharge 

1968 Shumaker et al. Arc discharge 

1969 Griffith et al. Arc discharge 

1969 Birkeland et al. Arc discharge 

1969 Bengtson et al. Shock tube 

1972 Wiese et al. Arc discharge 

1980 Baessler & Kock Arc discharge 

1981 Helbig & Nick Arc discharge 

1990 Uhlenbusch & Viöl Laser-induced discharge 

1995 Parigger et al. Laser-induced breakdown 

2000 Escarguel et al. Laser-induced breakdown 

2003 Flih et al. Laser-induced breakdown 

2003 Parigger et al. Laser-induced breakdown 

2008 Parigger et al. Laser-induced breakdown 

2010 Falcon et al. Radiation-driven 

History of Experiments 



A New, Unique Perspective 

• Radiation-driven experiment 
– As opposed to shocks (e.g., Bengtson et al. 1969), discharges 

(e.g., Wiese et al. 1972) 

– Uses large x-ray flux from z-pinch 
• Not available many places other than Z Pulsed Power Facility 

• Continuum backlighter → absorption spectra 

 Plasma Source Homogenous Stationary Emission Absorption 

Shock-heated X X 

Arc Discharge X X 

Laser-induced Breakdown Smooth X 

Radiation-driven X Smooth X X 

For plasmas at T ~ 0.5 – 2 eV and ne ~ 1017 cm-3 



Experimental Setup 

Z-pinch 
radiation 

1.5 μm Mylar 

Gold wall 

Gold wall 
radiation 

2 cm 

3 cm H2 gas 
vertical 

Cross-section of Gas Cell • Z-pinch x-rays uniformly irradiate 
gold wall in gas cell 

• Gold wall radiation couples well to 
hydrogen gas to heat through 
photoionization 

• Total particle density set by initial fill 
pressure 

12 cm 

Z-pinch 
Optical 

Spectroscopy 

35 cm 

Gas Cell 



Gas Cell 

• Alternate designs allow for different (and multiple) LOS options 
– Emission 
– Absorption 
– Distance from gold wall 
– Length of plasma 

 



Emission Absorption 



• Hβ shows stability in time 

• First shot displayed agreement 
with arc discharge experiment 
of Wiese et al. (1972) 

Hβ, the Standard 



Spectroscopic Line Fits 

• Using VCS theory 
– Neglecting optical depth effects 

• First fits to absorption data from experiment 
• Sufficient quality to begin discriminating between 

theories 

120 ns integration from shot z2267 



(Near-term) Strategy 

• Measure relative line shapes of Hβ, Hγ, Hδ, (Hε) for  
H plasma at WD photospheric conditions  
(T ~ 1 eV, ne ~ 1017 cm-3) 
– Gas fill temperature, pressure → total particle density 

– Hβ line shape → electron density ne 

– Gold wall temperature → radiation temperature Tr 

– Absolute intensity, absorption, emission → level populations 

• Compare to VCS, TB09, other theoretical line shapes 
– WD test case at recent Spectral Line Shapes in Plasmas 

Workshop in Vienna 

• Compare to Wiese et al., other experimental line shapes 



Pros/Cons of Platform 

• Strengths/Potential 

– Continuum backlighter (for absorption measurements) 

– Additional plasma diagnostics in development 

– Ability to investigate other gases (He, CO2, etc.) 

– Ability to explore time-dependent, non-LTE, 
collisional/radiative atomic kinetics 

• Weaknesses/Limitations 

– Harsh environment – hard radiation, debris 

– Experiment lasts 10s to 100s of ns 
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