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Why can we barely match the cognitive

function of a 4 month old?

 Wrong algorithms

— Artificial neural networks are simple; basically linear
algebra with non-linear filters

— Brain has much greater scale, complexity of anatomy,
variable dynamics, etc

 Wrong data
— Little or no context
— Behavioral relevance is rarely accounted for

* Wrong hardware

— Computers use a simple architecture

— “Tyranny of wires” makes connectivity of brain
impossible

— Learning is not trivial on silicon
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Neurogenesis through a different lens

e Adult neurogenesis is a clever solution to big
Al problem

— Limited structural plasticity is brain’s solution to
stability-plasticity dilemma

* Context dependent “latent” capacity for
learning is a very powerful approach
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How to leverage this in future computing?

e Algorithms

— Need stronger formal characterization

* Training
— Longer term perspective of what neurogenesis is
really doing

e Devices

— What would constitute neurogenesis on a chip?




What is pattern separation?
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Activity of network — GC Outputs
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Lack of neurogene5|s in large networks
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* Neurogenesis networks show activity to nove
information at much higher scales

* As we approach human scales, mature neurons appear
essentially silent in response to novel information

* Signal (immature) to noise (mature) is amplified in
larger networks




Metrics for understanding NG model
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Information processing in large networks
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Information processing in large networks
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Neurogenesis maintains compressibility

and increases total representation

1 T T T T L
—o—NG =50%
09 NG =10% H
——NG=1%
08 ——NG=0% {
EO.T* —
53
§ 5061 .
3
mgos— -
c
=0
%30.4— =
.5
303 -
02 —
o ‘\—o—,_—-&! )
1 Lol 1 Lol 1 \ll\l\n L Lol L Lo 1 L
?00 1K 10K 100K 1M 10M 100M
Size (Number of GCs)
10*
—#— NG=50%
NG =10%
100 ——NG=1%
—— NG =0%
L
10°
c
e
5 1
210
2]
[
o
10"
10"
10° Lol | . Lol P | L | . |
100 1K 10K 100K ™ 10M 100M

Size (Number GCs)



So which is right?

Overlapping EC inputs are encoded separately by the DG
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Pattern separation?

Associative memories formed in CA3 do not
interfere with one another

N AAAiAAAAAAA% an A Immature neurons B Mature neurons
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Or memory resolution?

Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content




Neurogenesis strikes a balance

No neurogenesis yields
very little activity
DG representations are
separate but very sparse

Neurogenesis increases
activity while preserving
separation
DG representations
increase their resolution
but avoid interference

Increasing activity
directly ruins pattern
separation
DG representations are
dense and informative but
potentially interfere with
each other
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Limitations of past modeling work

* Between abstract and high fidelity
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Modeling considerations

rurons, interneurons, and how they are

neurons

courtesy Chunmei Zhao
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Immature and mature neurons encode

information differentl

A Immature neurons B Mature neurons
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Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content

Aimone, Deng and Gage
Neuron; 2011




Mixed coding scheme in DG is

potentially very powerful

Memories encoded by Memories rely on

high and low information neurons: low information neurons:
Okay without neurogenesis

Maturation of neurons allows
memories to now be encoded
by high information neurons

Aimone, Deng and Gage
Neuron; 2011

Impaired without neurogenesis.

Dentate Gyrus performs sparse
coding for episodic memories

Mature neurons are tightly tuned
to specific features
* Not all events will activate
mature neurons

Immature neurons are broadly
tuned
» All events will activate some
immature neurons

Neurons mature to be specialized
to those events later
* Coding range of network gets
more sophisticated over time




Realistic scale model
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Realistic connectivity and dynamics
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