

A SWIR/MWIR Imaging Fourier Transform Spectropolarimeter

Julia Craven-Jones^{*1}, Michael W. Kudenov², and Eustace L. Dereniak²

1. Sandia National Laboratories, Albuquerque NM
2. College of Optical Sciences, University of Arizona, Tucson AZ

*Corresponding author – jcjone@sandia.gov

A short-wavelength and middle-wavelength imaging Fourier transform spectropolarimeter is presented. The instrument is referred to as the infrared hyperspectral imaging polarimeter (IHIP). The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a +/- 5 degree full field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing (cross talk) artifacts. In this talk we present the optical layout and operation of the IHIP sensor, our calibration techniques, and spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument.

This work is supported by NNSA/NA221, Victoria Franques, Program Manager.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.