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4. Case Study

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United 
States Department of Energy’s National Nuclear Security Administrationunder contract DE-AC04-94AL85000.

SAND2012-3822C



The Fukushima Dai-ichi Nuclear Power
Station Accident Chronology

Source:  Tokyo Electric Power Company
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Outline of Presentation

• Plant Information

• Boiling Water Reactor Basics

• Units 1-3 Accident Chronology

• Units 3 and 4 Spent Fuel Pool

• Consequence Management

• Recovery and Countermeasures
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Plant Information

• Six BWR units at 

the Fukushima Nuclear Station:
– Unit 1: ~460 MWe BWR3 1971 (in operation prior to event)

– Unit 2: 760 MWe BWR4 1974 (in operation prior to event)

– Unit 3: 760 MWe BWR4 1976 (in operation prior to event)

– Unit 4: 760 MWe BWR4 1978 (in outage prior to event)

– Unit 5: 760 MWe BWR4 1978 (in outage prior to event)

– Unit 6: 1067 MWe BWR5 1979 (in outage prior to event)
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Boiling Water Reactors
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Secondary Containment Where
Hydrogen Explosions Occurred
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Safety Systems to Mitigate
Accident Progression

• Many important safety systems are used to mitigate 
an accident in a BWR

• Systems that rely on AC Power were not available 
after power was lost
– Motor operated pumps

– Motor operated valves

• Other systems are available if power is lost
– Reactor Core Isolation Cooling (RCIC) System

– High Pressure Coolant Injection (HPCI) System

– Isolation Condenser (IC) on Unit 1

– Containment Venting System 



Reactor Core Isolation
Cooling (RCIC) System

• Steam driven system

• Used when main 
steam lines are 
isolated

• Pump draws from 
external condensate 
storage tank or 
suppression pool

• Adds heat load to 
suppression pool 
inside containment

• Activates on low 
water level or by 
operator action

Source:  NRC Training Manual
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High Pressure Coolant Injection
(HPCI) System

• Similar to RCIC

• Also steam driven, but 
much larger with a bigger 
pump

• Accepts more steam from 
the reactor pressure 
vessel

• Can depressurize the 
reactor pressure vessel 
very rapidly
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Isolation Condensers (ICs)

• Large heat exchanger 
that accepts steam 
from the reactor 
pressure vessel, 
quenches it and returns 
by gravity to the vessel

• Operated by opening 
valves and providing 
make up water

• Make up provided by 
diesel driven fire water 
system fire during 
station blackoutSource:  NRC Training Manual
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Containment Venting System

• Heat in containment raises 
pressure

• To maintain containment 
integrity, it is important to 
vent off steam to reduce 
vessel pressure

• Can vent from two locations 
– wet well and dry well

• To operate open MOV, air 
operated valve, and rupture 
disk

Source:  NRC Training Manual
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Accident Chronology – Event Initiation

• A magnitude 9.0 earthquake occurred on 
March 11 (Japan time), centered offshore 
of the Sendai region, which contains the 
capital Tokyo with peak ground horizontal 
acceleration of 0.561 g
– Plant design basis was a magnitude 8.2 

earthquake and a peak ground horizontal 
acceleration of (0.447 g)

• Serious secondary effects followed – a  
significant tsunami and aftershocks. 

• Estimated frequency of this earthquake   
1E-6 to 1E-4 per reactor year (Japanese 
government)
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The Tsunamis at Dai-ichi

• Seven tsunamis hit the plant

• Maximum height was 14 to 15 m

• Exceeded design basis of 5.7 m (original design basis was 3 m)

• Site grade is 10 m (Units 1-4) and 14 m (Units 5-6)
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Accident Chronology – Station Blackout

• Earthquake caused reactor/turbine trip and loss of offsite power 

• Emergency diesel generators (DGs) started and provided power 
to emergency systems

• Tsunami waves hit plant resulting in:
– Flooded water-cooled DGs

– Shorted emergency seawater pumps required for watered-cooled 
DGs (two air-cooled DGs survived)

– Flooded AC buses (all Units)and some DC buses (Units 1 and 2)

– Flooded switchgear so air-cooled DG for Unit 2 not able to provide 
power due to switchgear flooding; DG for Unit 6 operable

• Some power buses were not shorted by flooding (SLC & CRD)

• Although some air-cooled DGs were not damaged, loss of AC 
buses prevented distribution of power to emergency systems 
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Accident Chronology – Mitigation

• Focused on providing core cooling
– IC in Unit 1 (HPCI unavailable due to loss of DC bus)

– RCIC in Unit 2 (HPCI unavailable due to loss of DC)

– RCIC and HPCI in Unit 3

– Freshwater and seawater injection using diesel fire water 
pumps/engines

• And containment pressure control
– Wetwell and drywell venting

• Neither function was performed in time
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Accident Summary

• Off-site power to site 
lost due to earthquake

• All emergency diesel 
generators were 
disabled by flooding 
from tsunami 
(generators were 10 –
13 m above sea level)

• Emergency battery 
power was depleted 
after 8 hours

• Unable to cool fuel in 
reactors and spent fuel 
pools
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Challenges to Operators

• Much of the work was completed in darkness and 
flooded area

• Radioactivity levels were elevated

• After shocks and explosions defeated several efforts 
at aligning power and coolant injection

• Mitigation efforts used unconventional and unique 
methods – not based on training or procedures but 
on their fundamental knowledge

• Some had lost families in the tsunami but continued 
working

• Food was in initially in short supply
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Testimonies from Workers

• “In an attempt to check the status of Unit 4 diesel generator, I was 
trapped inside the security gate compartment. Soon the tsunami came 
and I was a few minutes before drowning, when my colleague smash 
opened the window and saved my life.”

• “In total darkness, I could hear the unearthly sound of the safety relief 
valve dumping steam into the torus. I stepped on the torus to open the 
S/C spray valve, and my rubber boot melted.”

• “The radiation level in the main control room was increasing 0.01 mSv 
(1 mrem) every 3 seconds but I couldn’t leave—I felt this was the end 
of my life.”

• “I asked for volunteers to manually open the vent valves. Young 
operators raised their hands as well; I was overwhelmed.”

• “Unit 3 could explode anytime soon, but it was my turn to go to the 
main control room. I called my dad and asked him to take good care of 
my wife and kids should I die.”
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IC operating

SC Saturated

Containment vent
H2 Explosion

Unit 1
level loss

Sea water injection

RCS Repressurizes

RCS Depressurized

RCIC -  CST

SC Saturated

Fuel damage
Containment vent

Noise from torus room

RCIC from suppression pool

Unit 2

RPV Depressurization
Sea water injection

Unit 4 (SFP)
Explosion in Unit 4 

RCIC operating
SC Saturated

Core
damage ?

Containment vents

H2 Explosion

HPCI operating

RPV Depressurization

Sea water injection Sea water injection

Unit 3

Friday 11 Saturday 12 Sunday 13 Monday 14 Tuesday 15 Wednesday 16

Earthquake at 14:46: LOSP

Tsunami at 15:41: SBO

Timeline of Major Fukushima 
Damage Sequences

core damage

Level 
loss

Level loss

 ?

• Early indications were that isolation 
condensers were operating and refilled

• Later indications are that the IC and HPCI 
were not in operation when power was lost

• No water injection for 14 hrs after IC was 
secured

• Early indications were that isolation 
condensers were operating and refilled

• Later indications are that the IC and HPCI 
were not in operation when power was lost

• No water injection for 14 hrs after IC was 
secured

• RCIC and HPCI both operable
• Seawater injection was well aligned with 

operator depressurization
• No water injection for almost 7 hrs

• RCIC and HPCI both operable
• Seawater injection was well aligned with 

operator depressurization
• No water injection for almost 7 hrs

• RCIC operated for a long 
time

• No core cooling for 6.5 hrs

• RCIC operated for a long 
time

• No core cooling for 6.5 hrs

4—Case Study 20



Fukushima Unit 1 Data (1 of 2)
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Fukushima Unit 1 Data (2 of 2)
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Hydrogen Detonation at Unit 1

Reactor Building

Refueling 
Floor
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Unit 2 Events

Date and time Time after scram (hr) Event 
3/11 14:46 -0.05 Earthquake
3/11 14:47 0.00 Scram
3/11 14:50 0.05 RCIC starts 
3/11 14:51 0.06 RCIC stops 
3/11 15:00 0.22 RHR starts wetwell cooling
3/11 15:02 0.25 RCIC starts 
3/11 15:27 0.67 Tsunami wave
3/11 15:28 0.68 RCIC stops 
3/11 15:27 0.80 Tsunami wave
3/11 15:36 0.82 RHR stops
3/11 15:39 0.87 RCIC starts
3/11 15:41 0.90 Station blackout
3/12 4:20 13.55 RCIC suction – wetwell

3/14 13:25 70.63 RCIC stops (assumed) 
3/14 16:34 73.78 Seawater injection ready
3/14 18:06 75.32 RPV depressurizes via SRV 1
3/14 19:20 76.55 Seawater injection stops
3/14 19:54 77.12 Seawater injection starts
3/14 21:20 78.55 SRV 2 opens
3/14 23:00 80.22 SRV 2 closes
3/15 14:00 95.22 SRV 2 opens
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Fukushima Unit 2 Data (1 of 2)
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Unit 3 Events

Time after scram (hr) Event

0.0 Reactor scram (quake 1 min. before)

0.30 RCIC starts

0.63 RCIC stops

0.67, 0.80 1st and 2nd tsunami waves

0.85 Loss of AC power

1.27 RCIC starts

20.82 RCIC stops

21.80 HPCI starts

30.7 – 35.9 DC battery depletion

35.92 HPCI stops

42.13 – 42.35 RPV depressurizes via SRV

41.8 – 42.5 First S/C vent open

42.6 Injection starts

44.5 S/C vent close
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Fukushima Unit 3 Data

4—Case Study 28



Unit 3 Containment Pressure
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Unit 3 Hydrogen Explosion in
Reactor Building at 68 hours 

Original source  NHK News Japan
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Unit 3 Reactor Building
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Water Spray/Injection into 
Spent Fuel Pools
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BWR Spent Fuel Pool
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Unit 4 Spent Fuel Pool (1 of 2)

• Reactor in Unit 4 was completely de-fueled for 
maintenance

• All fuel offloaded to spent fuel pool
– Youngest (hottest fuel was 105 days)

– Decay heat level was ~2 to 2.5 MW

• Reactor building was devastated by violent explosion 
on Tuesday March 15 at ~6:10 am after Unit 2 
reports loud noise from torus room (events assumed 
unrelated)
– Unlike Units 1 and 3, there is no actual video of Unit 4 

explosion

– Explosion was 3.5 days after earthquake
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Unit 4 Spent Fuel Pool (2 of 2)

• It was feared that the pool had boiled dry and Zr-
steam reaction produced H2 that subsequently 
exploded

• Such conditions seemed difficult to imagine without 
significant water loss

• MELCOR analyses employed to evaluate draindown 
scenario

• Release of large amount of Cs-137 (little I-131) would 
have occurred
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Video from Unit 4 Spent Fuel Pool

Copyright TEPCO - Used by permission

Copyright TEPCO - Used by permission Copyright TEPCO - Used by permission

Copyright TEPCO - Used by permission
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Common Off-gas Ducts 1F3-1F4
Source of H2 from Unit 3 Accident?
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Evidence of Hydrogen Flow from 
Unit 3 to Unit 4
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Damage to Unit 4
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Unit 3 Spent Fuel Pool Damage

• Concrete and steel from building destruction fell onto 
pool

• Radioactivity level in Unit 3 pool much higher than 
Unit 2

• Isotopic measurement of Cs-137, I-131 and Cs-134 
suggests
– Some damage to stored fuel (Cs-134/Cs137)

– Some contamination from the reactor accident(s) (Cs/I)
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Video from Unit 3 Spent Fuel Pool

Copyright TEPCO - Used by permission Copyright TEPCO - Used by permission

Copyright TEPCO - Used by permission
Copyright TEPCO - Used by permission
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Accident Chronology – Summary (1 of 2)

• Isolated from external heat sink with internal sinks depleted, 
Emergency Operation Procedures (EOPs) for depressurization 
and low pressure injection was not successful

– Response time for lost power, water or cooling was too long to help

– Low pressure injection inadequate to recover cores

– Fire trucks in use at unit 1 when needed at another unit

• Severe accidents were not avoided in any case

– Mitigation not so successful – Effectiveness of Emergency 
Operation Procedures (EOPs) and Severe Accident Mitigation 
Guidelines (SAMGs) should be evaluated

– Traditional SAMG recommendations to add water aggravate fission 
produce release from damaged containments

– Nevertheless, releases are believed to be not massive (~1% per 
reactor)
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Accident Chronology – Summary (2 of 2)

• Plant data measurements were inadequate to manage post 
accident controls
– Few pressures and temperatures and unreliable, unreliable water 

levels measurements for vessel, containment and wetwell, 
degrading instruments

• Response to accident was at times ad hoc
• Responders at times were unfamiliar with severe accidents
• Systems and responses invented on the fly as needed

– Sometimes no good solutions are available

• Much to be learned – more vigilance and advanced planning is 
needed



U.S. Department of Energy (U.S. DOE)
Consequence Management Support

• Assist the Federal, State, Local, Tribal and foreign governments 
in protecting the health and well being of their citizens:
– Estimate/determine the radionuclide source term
– Provide initial predictions (data products) using atmospheric 

dispersion models and source term estimates
– Verify, validate and update predictions based on ground monitoring 

data, fixed wing surveys and laboratory analysis data
– Provide comprehensive characterization of environmental and 

public impacts based on models and data
– Predict radiation dose impacts over various time phases
– Predict food contamination impacts
– Comprehensive characterization of environmental and public 

impacts based on this data
– Provide centralized point of contact for federal assets
– Provide data to Decision Makers for public protection decisions
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Field Personnel

Radiological 
Survey Aircraft

Data Analysis/
Management

Mobile Laboratories

Laboratory Personnel

SNL & LLNL
Models

Consequence Management Assets



What Radionuclides and How 
Much Radioactivity was Released?

• Potential Source Terms

• 4 Boiling Water Reactors at risk

• 4 Spent Fuel Pools, holding spent fuel of various age, at risk

• Fuel
– Low Enriched Uranium 

– Mixed Oxide (< 6% in Unit 3)

• Many different species of radionuclides produced by nuclear 
fission
– Different half-lives (seconds to thousands of years)

– Different radiations (alpha, beta, gamma)

• Difficult to determine the exact condition of reactors and spent 
fuel pools 
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Ground Level Dose Rate 
(normalized to 29 Apr)

Total Cs Deposition
(normalized to 29 Apr)

Aerial Measuring Results
Joint US / Japan Survey Data

Aerial Measuring Results
Joint US / Japan Survey Data

Aerial Measuring Results
Joint US/Japan Survey Data

~150,000 Curies
(maybe 300,000?)
~150,000 Curies
(maybe 300,000?)
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19-91 μSv/hr (1.9 – 9.1 mrem/hr)

U.S. average background - 0.041 
mrem/hr

Japan 2008 background - 0.027 mrem/hr 
(0.01-0.15)

(UNSCEAR, 2008)

19-91 μSv/hr (1.9 – 9.1 mrem/hr)

U.S. average background - 0.041 
mrem/hr

Japan 2008 background - 0.027 mrem/hr 
(0.01-0.15)

(UNSCEAR, 2008)



Field Monitoring Activities

What Was Done?

• Mobile monitoring

• In-situ 
measurements

• Exposure/dose rate 
measurements

• Air sampling

• Soil samples

• Swipe samples

Why?

• Calibrate Aerial 
Measurement System 
measurements

• Define radionuclide mixture

• Support radiological 
assessments

• Assess resuspension of 
deposited materials

• Assess migration of 
radionuclides

Summary of Activities

• > 620 air samples

• > 117 in-situ spectra

• > 141 soil samples
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Confounding Factors (1 of 2)

• 15 hour time difference between teams in Japan and New 
Mexico.

• Japanese regulations were not understood

• Insufficient staffing led to burnout

• Massive amounts of data were available for review and 
assessment

• Management of data flow and communication (email) was very 
difficult

• It was difficult to get current data on the actual status (health) of 
the reactors

• Multiple releases occurred under varying weather (snow, rain, 
sunshine) and wind conditions

• Difficult to perform accurate radiological assessments for quite 
some time because the radionuclide mixture and released 
activities were not known
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Confounding Factors (2 of 2)

• Command and Control was overwhelmed, everything was given 
top priority

• Leadership struggled to coordinate taskings and current status 
of Consequence Management assets at multiple laboratories in 
the U.S. and multiple locations in Japan

• The Consequence Management Home Team was put under a 
lot of pressure to produce assessments and data products too 
quickly, and therefore, Quality Assurance and Quality Control 
measures were not always adequate

• Rapidly changing wind and precipitation created complex 
dispersion patterns

• Complex terrain challenged models to predict and explain 
deposition patterns

• Rain and snow created complex deposition patterns
• Many different individuals and agencies were making their own 

predictions
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Continuing Consequence
Management Activities

• U.S. Air Force Japan and Japanese governments to 
continue monitoring activities as needed

• Japanese trained and equipped to fly U.S. DOE 
Aerial Measurement System

• Japanese equipped with an enhanced laboratory 
analysis capability

• U.S. Air Force Japan trained and equipped to fly 
contingency Aerial Management System

• U.S. DOE continues to support Japanese and U.S. 
Air Force Japan from Home Team

• Additional radiological assessments
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Countermeasures for Japanese
Nuclear Power Stations (1 of 4)

• Make stations safer against a tsunami by preventing 
flooding at the site and inside buildings

• Take multiple and diverse measures to protect the 
cooling function

• Lead reactors to cold shutdown reliably and safely 
even under conditions similar to those that occurred 
at Fukushima



Countermeasures for Japanese
Nuclear Power Stations (2 of 4)

• Measures to prevent to flooding on site
– New and higher reinforced concrete sea walls to withstand 

earthquakes and tsunamis

– Intake water ponds for sea water overflow

– Protection walls inside the sea walls to protect pumps 
outdoors ponds

– Emergency Sea Water Cooling System with pump installed 
inside a water tight building

– Intake water ponds connected by sea water tunnel to provide 
multiple sources of cooling water for emergency pump



Countermeasures for Japanese
Nuclear Power Stations (3 of 4)

• Measures to prevent flooding inside reactor buildings
– Double structures for large cargo receiving docks

– New structures with waterproof doors in outside walls of 
reactor buildings that enhance pressure resistance and 
waterproofing

– Install new water-tight doors, reinforce existing ones for 
basement equipment rooms

– Other measures to further enhance waterproofing



Countermeasures for Japanese
Nuclear Power Stations (4 of 4)

• Multiple alternative means for emergency measures to ensure 
cooling function and lead reactors to cold shutdown

– Emergency generators on building roof tops, spare storage 
batteries, multi-power supplies if battery power is depleted

– Gas turbine generators, fuel tanks, and power equipment with 
waterproof power cables outside reactor building on high ground

– Alternative means of water injection by makeup water pumps 
powered by gas turbine generators and emergency generators

– Direct injection of water into the reactor by portable power pumps

– New water tanks on high ground

– Remote pressure venting and nitrogen cylinders for manual venting

– Replacement sea water pumps in emergency supply warehouse on 
high ground

– Heavy equipment deployed to remove debris on site roads

– Restoration of external site power and recovery of cooling function 



Recovery at Unit-1

After hydrogen burn

Now



Questions?
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