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Outline

* My definitions of “THz” and “THz gap”

* THz integrated circuits
— why replace quasi-optics
— rectangular waveguides
— integrated transceivers

 What transceivers can show us about QCLs

— current tuning
— feedback
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The THz Spectrum
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Attenuation in dB/km horizontal at sea level, 20° C, 70% r.h. (NASA)
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The “Shrinking” THz Gap

Solid-State THz Sources (CW)
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The THz Gap
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Outline

* My definitions of “THz” and “THz gap”

* THz integrated circuits
— starting simple — heterodyne receiver
— why replace quasi-optics
— rectangular waveguides
— Integrated transceivers

 What transceivers can show us about QCLs
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Simple THz system: THz receiver
Outside World

Mirror/optics
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Coherent Detector: THz receiver

Mirror/optics

Heterodyne receivers enable:
1) high sensitivity detection

'\
/ @/,'. .

‘ Mixer Block
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Coherent Detector: THz receiver

WV Heterodyne transceivers enable:
1) high sensitivity detection

2) high spectral resolution
Mirror/optics
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Integration Roadmap

‘; /\\\ E*  Why Replace Quasi-Optical Receiver

« Rectangular Waveguide Integration

« Monolithic Integration

RF horn

/ \

QCL Mixer

External THz Signal
q Schottky Diode
% — ] «—Antenna
%;

o»
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Two THz Waveguides

Metal-Metal Surface Plasmon
Waveguide Waveguide

a) b) |

O Contact Metal

B N+ GaasLT-GaAs
B Gass/AlGaAs SL
O Undoged Gass

Kumar, Opt. Exp., 15, 113, 2007 Demichel, Opt. Exp., 14, 5335, 2006
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(Courtesy J. R. Gao, TU Delft)

QCL Far Field Issues

Metal-Metal Surface Plasmon
Waveguide Waveguide
a) b) |

O Contact Metal
B N+ GaAasLT-GaAs

Metal-metal

Vertical angle (deg)
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Fixing the beam pattern

Amanti, Elec. Lett., 43, p573, 2007
o Maineult, Appl. Phys. Lett. 93, 183508 (2008)
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Lee, Opt. Lett., 32, p2840, 2007
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Controlling the Beampattern

Danylov, Appl. Opt. 46, 5051 (2007)

e — " Amanti, Nat. Phot..3, 586 (2009)
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Integration Roadmap

 Why Replace Quasi-Optical Receiver

N — Poor coupling
- RN E* — Bulky

— Alighment sensitivity

« Rectangular Waveguide Integration

— Background
— Micromachined rectangular waveguides
RF horn N — QCL / RWG integration
a—alm,
/ \

QCL Mixer

External THz Signal
Schottky Diode
% ] «—Antenna

Sandia
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Hybrid Integration:
QCLs in rectangular waveguides

Source: A
RF horn

VDI gy S
P o s NG
e o 3 b - \ .
VL \D | — %) \ = o
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E—ff;/'“" g\ / \ ey INAF

ISSTT-08

QCL Mixer

 Why Rectangular Waveguides

— RWG is a widely used standard

— Propagation mode structure in RWG known

— Horns should improve beampatterns and coupling

— Waveguide elements (couplers, splitters, ...) exist

— Can mate directly to mixers in existing RWG (no optics)
* Problems with Existing Waveguides

— Conventional machined split-block RWG doesn’ t work well
with QCLs

— $$$ / labor intensive** @ Soncia
National
Laboratories




Micromachining Rectangular Waveguides

1. Deposit seed
metal and pattern
photoresist

2. Electoplate Au -
N Phoorosit g

seed, pattern 2nd
PR, and plate lids - - -

openings

4. Remove
photoresist and

2w seed metal [ SiibSrate M

SUNY Buffalo - 2012

Rowen, Proc. SPIE, 7590, 2010

MESANuF ab 18kV 188um x 196

» Additive electroplating technique
suitable for various substrates

— Allows waveguide fabrication on
QCLs or other devices

MESA\uFab 18kVU  SBum
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The dirty little secret...

Removing Photoresist _
O et T N R T AL Alignment

\
e, 34 . < h . Ve
o) pNAN R TN FE rg AL Y

>

Nonuniform Electroplating

ASRDE VoM %
L ;g y g 0

Delamination

MESA~uF ab 18kU 1880m

58 M

...simple processes are never simple Sandia
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g

4 Micromachined THz Waveguides

Photoresist H-Plane Bends
removal holes

Horn antenna

~uUF ab

18kV S88um

End view of
— waveguide

horn antenna
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THz Micromachined Waveguide Components
=

 Demonstrated THz components

(waveguides, bends, tees, and couplers)
needed for THz integrated circuits.

« Achieved low propagation and bend
losses (at 2.9 THz).

-1.4 +/-0.15dB/ mm (.15dB /1)
-0.15 +/- 0.15 dB / bend

» Observed good far-field beam patterns.

Antenna Beam Pattern
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Length difference (mm)
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Integrated Lasers with Waveguides

Built waveguides
on top of lasers

Chip Tests
 H-plane bends

* E-plane bends

» Magic-Tees

« Combiners

e Horns

* Insertion position
* WG length

Sandia
National
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Integrated Waveguide Performance

THz QCLs * Merges microwave and optical technology
* Output beam pattern defined by horn
« Emission can be moved around on the chip

Light-Current-Voltage
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Integration Roadmap

« Monolithic Integration

— Background
RF horn = — Rectified DC response
N i — Mixing response
/ \
QCL Mixer

External THz Signal
Schottky Diode
% 1 «—Antenna

Sandia
National
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~.Monolithically Integrated Transciever
-~

Insert diode directly into laser core

Mode intensity
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Kohler et al. , Nature, 417, 2002

Wanke, Nat. Phot., 4, 565, (2010)
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Insert diode directly into laser core

Benefits
— Reduces size
— Eliminate components
— Ensures constant ‘alignment’
— Enhances laser/diode coupling
— Bonus : laser diagnostic tool

Wanke, Nat. Phot., 4, 565, (2010)
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Completed QCL/Schottky THz IC

3 mm

R B

diode
LASER

: bottom 7 L Nl - i air
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Diode and Laser DC Properties

Typicial Diode DC I-V Properties
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Diode Rectified (D.C.) Response

0.4- b

Laser Power (mW)

N

.+ Diode responds to
+ QCL power

w
T T T

 Butnot linear in
power

Diode DC Response
(% change)
\l_‘\ T 1 \N\ T 1

O 100 200 300 400 500 600 700
QCL Current (mA)
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Integrated Diode THz Mixer

. Laser output to FTIR
g

3mm x 1.5 mm

~13 GHz—» |

-
a [RTOOWES, -

Intensity

e Purposely built a multimoded QCL centered

on 2.81 THz
— QCL emission (FTIR) spectra show
Fabry-Perot modes spaced by ~13 GHz

Sandia
National
Slide 30 Laboratories
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Integrated Diode THz Mixer

Laser output to FTIR

~13 GHz— i«

Intensity

3mm x 1.5 mm

275 280 7 RS

THz
Electrical feed to spectrum analyzer v (THz)
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Laser Power (mW)

IF Amplitude (dBm)

N
(@)
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|.F. dependence on laser power
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600

700

|.F. indicates when
laser turns
multimoded.

|.F. amplitude is fairly
Independent of diode

bias.
Sandia
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Slide 32 Laboratories



Integrated THz Receiver
Laser output to FTIR

~13 GHzZ—»i i Molecular Gas
P Laser Frequency

Intensity

3mm x 1.5 mm

Sandia
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Mixer Response (dBm)

Integrated THz Receiver

S J—— \

3mm x 1.5 mm

Electrical feed to spectrum analyzer
0 I I I I I

FP Mode Spacing
20 | ]
d -

FP-5 1 Fpas
-40 2FP -8 -

5 10 15 20 25
Beat Frequency (GHz)

SUNY Buffalo - 2012

Laser output to FTIR

Intensity

Molecular Gas

~13 GHzZ—»{ i
P Laser Frequency

—>id

High-resolution
coherent
reciever
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External Coupling to Receiver

-95

Y (mm)

2 1 0 1 2

X (mm)

' I uuuuuuuuu .
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Outline

* My definitions of “THz” and “THz gap”

* THz integrated circuits

 What transceivers can show us about QCLs
— Current Tuning
— Feedback Sensitivity

Sandia
National
SUNY Buffalo - 2012 Slide 36 Laboratories



Current Tuning

— 350 mA II I I I II VBOISEpIh2C

Amplitude (a.u.)

3 I'BDISH}II‘I-E{'I I it - -
LN Peak Position Small redshift with current
) | ——Jwme || - Smaller than FTIR resolution
N ——2.814 THz ] ]
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é 1 + |FTIR |
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0.5 i
Y
0 | |
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Current (mA)
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Current Tuning

13 GHz—»! - 13 GHz

O

13—8 ‘<—> 13+8

s L
12.7 12.8 12.9 13 13.1 13.2

Current

Sandia
National
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Current Tuning

~13 GHz— =

12.7 128 12.9 13 131 13.2

13-6  13+0

Current

Sandia
National
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Current Tuning

~13 GHz— i

12.7 12.8 12.9 13 131 13.2

13 13

Current

Sandia
National
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Current Tuning

~13 GHz—

12.7 i2.8 12.9 13 13.1 13.2

Current

Sandia
National
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Current Tuning

~ 6 MHz / mA

s L
12.7 12.8 12.9 13 13.1

Selected Fabry-Perot Mode Frequencies
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e
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Q i

500 VBO158pIn2E
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Frequency (GHz)
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Current {(mA)

Current Tuning

700 . = — . !
e
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What happens when lasers cross?

* For 6 < 23 MHz, the QCL is injection locked.

\\
\\
\\
“

68

@
o

<«— Injection "

Locked

R
N
/

QCL Current (mA)
QCL Current (mA)

<+— RQ Beat Note
.\
\

12.9 1292 1294 1296 1298 13 12.7 12.8 12.9 13 13.1 13.2
Frequency (GHz) Frequency (GHz)
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Outline

* My definitions of “THz” and “THz gap”

* THz integrated circuits

 What transceivers can show us about QCLs
— Current Tuning
— Feedback Sensitivity

Sandia
National
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4\g Feedback Sensitivity

et

Some of the QCL emission retroreflects

Sandia
National
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Feedback Sensitivity

Some of the QCL emission retroreflects
- Another laser facet

- Window or lens
- External mixers

Wanke, Proc SPIE, 7953, (2011)

)
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Focal Position Feedback Sensitivity

P
Top View | {] Front View I A
QCL . My
_ ;’u‘\ * +
« Mx—>»t

What happens when we scan the cryostat
to find the FIRL beam?
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Focal Position Feedback Sensitivity
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+. Focal Position Feedback Sensitivity

<« X *

Strong frequency and H

amplitude pulling QCLB

Simple demonstration of Airy
diffraction pattern

IF Frequency

IF Amplitude

-2‘J r T

40 dB
Y (mm)
60 MHz

X (mm) Y| i
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Cavity Length Sensitivity
i

L
n |

20 MHz

Frequency

S ( '
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Feedback Effects on FP mode

Not always a single beat frequency

Mirror Position
500 um

12.6 12.7 12.8 12.9 13 13.1 Sandia
Frequency (GHz) @ National
Laboratories



Mirror Position

Feedback Effects on FP mode

v

A

600 MHz

FP Modes Split into
multiple lines

P 3 - =* o > L] i
12,6 12.7 12.8 12.9 13 1341

Frequency
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Feedback Effects on FP mode

Region | - Normal Fabry-Perot Modes

A
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600 MHz
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Feedback Effects on FP mode

Region Il - Fabry-Perot Modes Bifurcate
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Feedback Effects on FP mode

Region Il - Chaos Onset
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Q;»When life gives youlemens-peaches...

... use feedback to image the topography

Sandia
National
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Amplitude (dBm)

-35

40+

45+

B0+

55+

60+

-65

chli:J

(((—H-Li

_Oscillating Mirror

Or...

... use feedback to measure vibration
frequency of a reflector

FM sidebands

g63Hz | §
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Summary

Laser Characterization
THzZ Integrated Injection Locking Vibrometry

Transcelver

| v n m
’a.{} I ."Mr‘
) l MlMJ"

| \‘
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3mm x 1.5 mm

.
X ' i,
-':"4.. e —%

L‘Z.M‘ﬁg ..qm @San_dia
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