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Outline 

•My definitions of “THz” and “THz gap” 

 

• THz integrated circuits 

– why replace quasi-optics 

– rectangular waveguides 

– integrated transceivers 

 

•What transceivers can show us about QCLs 

– current tuning 

– feedback 
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The THz Spectrum 

  :    1011 – 1013   Hz     

  :     3000 - 30    µm    

k :     3.3 - 333     cm-1 

E :      0.4 – 40     meV 

Attenuation in dB/km horizontal at sea level, 20°C, 70% r.h.  (NASA) 

Sub-mm 
     THz 
         Far-IR 

Electronics Photonics Undeveloped 

Regime 

Between Microwave and Infrared 
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The THz Spectrum 

 :      1 - 5    THz 

 :  300 - 60   µm 

This  

Talk 

Attenuation in dB/km horizontal at sea level, 20°C, 70% r.h.  (NASA) 

QCLs 
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Solid-State THz Sources (CW)
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The THz Gap 

Solid-State THz Sources (CW)
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Outline 

•My definitions of “THz” and “THz gap” 

 

• THz integrated circuits 

– starting simple – heterodyne receiver 

– why replace quasi-optics 

– rectangular waveguides 

– integrated transceivers 

 

•What transceivers can show us about QCLs 
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Simple THz system: THz receiver 

Mixer Block 

QCL 

Mirror/optics 

P   E1E2cos(1-2) + f(1) + f(2)+ f(1+2) 

 

Outside World 
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Coherent Detector: THz receiver 

Mixer Block 

QCL 

Mirror/optics 

Heterodyne receivers enable: 

1) high sensitivity detection 
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P   E1E2cos(1-2) + f(1) + f(2)+ f(1+2) 
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Coherent Detector: THz receiver 

Mixer Block 

QCL 

Mirror/optics 

Heterodyne transceivers enable: 

1) high sensitivity detection 

2) high spectral resolution 

-3 dB 1 Hz 

60 Hz 
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P   E1E2cos(1-2) + f(1) + f(2)+ f(1+2) 
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Integration Roadmap 

• Why Replace Quasi-Optical Receiver 

 

• Rectangular Waveguide Integration 

  

• Monolithic Integration 

 

 

 

QCL 

RF horn 

Mixer 
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Two THz Waveguides 

Metal-Metal 

Waveguide 
Surface Plasmon 

Waveguide 

Kumar, Opt. Exp., 15, 113, 2007 Demichel, Opt. Exp., 14, 5335, 2006 
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QCL Far Field Issues 

(Courtesy J. R. Gao, TU Delft) 

Metal-Metal 

Waveguide 
Surface Plasmon 

Waveguide 
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Fixing the beam pattern 

Amanti, Elec. Lett., 43, p573, 2007 

Lee, Opt. Lett., 32, p2840, 2007 

Maineult, Appl. Phys. Lett. 93, 183508 (2008) 
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Controlling the Beampattern 

Danylov, Appl. Opt. 46, 5051 (2007) 
Amanti, Nat. Phot..3, 586 (2009) 

Yu, J. Opt. Soc. Am. B, 27, B30, 2010 
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Integration Roadmap 

• Why Replace Quasi-Optical Receiver 

– Poor coupling 

– Bulky 

– Alignment sensitivity 

 

• Rectangular Waveguide Integration 

– Background 

– Micromachined rectangular waveguides 

– QCL / RWG integration 

  

• Monolithic Integration 

 

 

 

QCL 

RF horn 

Mixer 
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• Why Rectangular Waveguides 

– RWG is a widely used standard  

– Propagation mode structure in RWG known 

– Horns should improve beampatterns and coupling 

– Waveguide elements (couplers, splitters, ...) exist 

– Can mate directly to mixers in existing RWG (no optics) 

• Problems with Existing Waveguides 

– Conventional machined split-block RWG doesn’t work well 

with QCLs 

– $$$ / labor intensive** 

Hybrid Integration: 

QCLs in rectangular waveguides 

• Why Rectangular Waveguides 

– RWG is a widely used standard  

– Propagation mode structure in RWG known 

– Horns should improve beampatterns and coupling 

– Waveguide elements (couplers, splitters, ...) exist 

– Can mate directly to mixers in existing RWG (no optics) 

 

QCL 

RF horn 

Mixer 

Source: 

VDI 

Source: 

INAF 

ISSTT-08 

• Why Rectangular Waveguides 
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• Additive electroplating technique 

suitable for various substrates 

– Allows waveguide fabrication on 

QCLs or other devices 

 

PR 

substrate 

1. Deposit seed 

metal and pattern 

photoresist 

PR 

substrate 

2. Electoplate Au 

in photoresist 

openings 

PR 

substrate 

3. Deposit 2nd 

seed, pattern 2nd 

PR, and plate lids 

substrate 

4. Remove 

photoresist and 

2nd seed metal 

Micromachining Rectangular  Waveguides 

Rowen, Proc. SPIE, 7590, 2010  
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The dirty little secret... 
Removing Photoresist 

Delamination 

Photoresist Cracking 

Nonuniform Electroplating 

Step Coverage 

Alignment 

...simple processes are never simple 
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Micromachined THz Waveguides 

Horn antenna 

Photoresist 

removal holes 

End view of 

waveguide 

horn antenna 

080711 

H-Plane Bends 
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THz Micromachined Waveguide Components 

080711 

Antenna Beam Pattern 
Transmission through various components 

• Demonstrated THz components 

(waveguides, bends, tees, and couplers) 

needed for THz integrated circuits. 
 

• Achieved low propagation and bend 

losses (at 2.9 THz). 
- 1.4 +/- 0.15 dB / mm       (.15 dB / ) 

- 0.15 +/- 0.15 dB / bend 
 

• Observed good far-field beam patterns.  

SEMS of Waveguides 
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Nordquist, JSTQE, 17, 130, (2011) 
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Integrated Lasers with Waveguides 

Chip Tests 

• H-plane bends 

• E-plane bends 

• Magic-Tees 

• Combiners 

• Horns 

• Insertion position 

• WG length 

Note: parallel assembly advantage 

Built waveguides 

on top of lasers 

Wanke, Proc SPIE, 7215, (2009) 
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Integrated Waveguide Performance 

6 bends 

• Merges microwave and optical technology 

• Output beam pattern defined by horn 

• Emission can be moved around on the chip 

THz QCLs 

Horn Antennae 

Beam Pattern 
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Integration Roadmap 

• Why Replace Quasi-Optical Receiver 

 

• Rectangular Waveguide Integration 

  

• Monolithic Integration 

– Background 

– Rectified DC response 

– Mixing response 

 

 

 

QCL 

RF horn 

Mixer 
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Monolithically  Integrated Transciever 

Vbottom Vtop 

GND GND IF 

 

 

 

 

Insert diode directly into laser core 

Wanke, Nat. Phot., 4, 565, (2010)  

Bottom 

contact 

layer 

Metal 

layer 

 

Kohler et al. , Nature, 417, 2002 
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Monolithically  Integrated Transciever 

Vbottom Vtop 

GND GND IF 

 

 

 

 

Benefits 

– Reduces size 

– Eliminate components 

– Ensures constant ‘alignment’ 

– Enhances laser/diode coupling 

– Bonus : laser diagnostic tool 

Insert diode directly into laser core 

Wanke, Nat. Phot., 4, 565, (2010)  
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Completed QCL/Schottky THz IC 

Vbottom 

Vtop 

Vtop 

GND GND IF 

diode 

IF 
GND GND 

LASER 

3mm x 1.5 mm 

air 

bridges 

3 mm 
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Diode and Laser DC Properties 
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Diode Rectified (D.C.) Response 
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• Diode responds to 

QCL power 

 

• But not linear in 

power 
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Integrated Diode THz Mixer 

3mm x 1.5 mm 

• Purposely built a multimoded QCL centered 

on 2.81 THz 

• Purposely built a multimoded QCL centered 

on 2.81 THz 

– QCL emission (FTIR) spectra show 

Fabry-Perot modes spaced by ~13 GHz 

 (THz) 

Laser output to FTIR 

QCL 

modes 
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Integrated Diode THz Mixer 

3mm x 1.5 mm 

Electrical feed to spectrum analyzer 

• Diode outputs IF signal at spacing 
between QCL modes 

 

Laser output to FTIR 

 (THz) 

QCL 

modes 
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I.F. dependence on laser power 
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• I.F. indicates when 

laser turns 

multimoded. 

 

• I.F. amplitude is fairly 

independent of diode 

bias.  
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Integrated THz Receiver 

3mm x 1.5 mm 

Laser output to FTIR 

Molecular Gas 

Laser 
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Integrated THz Receiver 

3mm x 1.5 mm 

Electrical feed to spectrum analyzer 

Laser output to FTIR 

High-resolution  

 coherent 

 reciever  
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External Coupling to Receiver 

3mm x 1.5 mm 
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Outline 

•My definitions of “THz” and “THz gap” 

 

• THz integrated circuits 

 

•What transceivers can show us about QCLs 

– Current Tuning  

– Feedback Sensitivity 

 



SUNY Buffalo - 2012 Slide 37 

Current Tuning 

 

 

Small redshift with current 

 - Smaller than FTIR resolution 

 - Fairly noisy measurement 
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Current Tuning 

 

 
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Current Tuning 

 
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Current Tuning 
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Current Tuning 

 
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Current Tuning 
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Current Tuning 
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QCL Mode Spacing 
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What happens when lasers cross? 

• For  < 23 MHz, the QCL is injection locked. 

Injection 

Locked 

Wanke, Proc SPIE, 7953, (2011) 

FIRL + QCL 

Beat Notes 

FP Beat Note 
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Outline 

•My definitions of “THz” and “THz gap” 

 

• THz integrated circuits 

 

•What transceivers can show us about QCLs 

– Current Tuning  

– Feedback Sensitivity 
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Feedback Sensitivity 

Some of the QCL emission retroreflects 

 

Molecular Gas 

Laser 
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Feedback Sensitivity 

Some of the QCL emission retroreflects 

  

 - Another laser facet 

 - Window or lens 

 - External mixers 

Wanke, Proc SPIE, 7953, (2011) 
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Focal Position Feedback Sensitivity 

Front View 

What happens when we scan the cryostat 

to find the FIRL beam? 

Top View 
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Focal Position Feedback Sensitivity 

FP Mode Separation 
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Focal Position Feedback Sensitivity 

Strong frequency and 

amplitude pulling 

 

Simple demonstration of Airy 

diffraction pattern 
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Cavity Length Sensitivity 
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Feedback Effects on FP mode 
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Feedback Effects on FP mode 
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Feedback Effects on FP mode 
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Region I - Normal Fabry-Perot Modes 
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Feedback Effects on FP mode 
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600 MHz 

Frequency 
Stable Spectrum 

Region II - Fabry-Perot Modes Bifurcate 
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Feedback Effects on FP mode 
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600 MHz 

Frequency 
Unstable Spectrum 

Region III - Chaos Onset 
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When life gives you lemons peaches... 

... use feedback to image the topography  
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Or... 

 - 12,927,489.3 (kHz) 
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... use feedback to measure vibration 

frequency of a reflector 
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Summary 

3
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THz Integrated  

Transceiver  

Imaging 
 Feedback / Chaos 

Laser Characterization  

Injection Locking Vibrometry 

Phase Locking 
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