

Used Fuel Disposition Campaign

Open Emplacement Mode Disposal Concepts

What are they and why do we need them?

Ernest Hardin
Sandia National Laboratories
Used Fuel Disposition R&D Campaign Working Group
Las Vegas, Nevada
May 15, 2012

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2012-3943 C
Unclassified Unlimited Release

Acknowledgments

Payton Gardner & Dan Clayton
Sandia National Laboratories

Jim Blink, Max Fratoni, Harris Greenberg & Mark Sutton
Lawrence Livermore National Laboratory

Joe Carter & Mark Dupont
Savannah River National Laboratory

Rob Howard
Oak Ridge National Laboratory

Bill Spezialetti
Office of Used Nuclear Fuel Disposition

Outline

■ Geologic Disposal Concepts

- Reference concepts and thermal analyses
- Mined disposal: open vs. enclosed emplacement
- Proposed reference open-mode concepts
- Direct disposal of multi-purpose canisters
- Engineering and performance modeling challenges

■ Connection to BRC Recommendations

Prompt efforts → Multi-purpose canisters

Multi-purpose canisters → Direct disposal

Direct disposal → Open emplacement modes

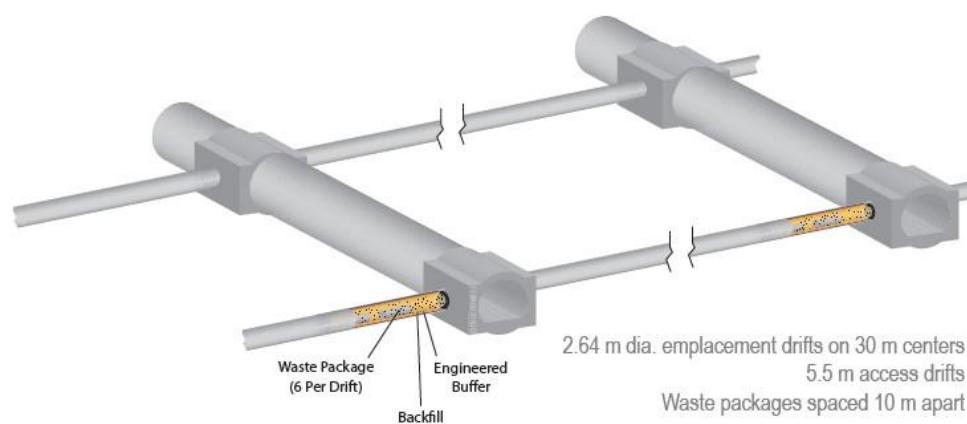
Reference Disposal Concepts and Thermal Analysis

1. Waste inventory

- Waste types from a sample of possible future commercial fuel cycles
- *Inventory is the link to fuel cycle options and upstream technologies*

2. Geologic setting

- Reference settings: clay/shale, crystalline rock, bedded (or domal) salt, and deep crystalline basement


3. Engineering concept of operation

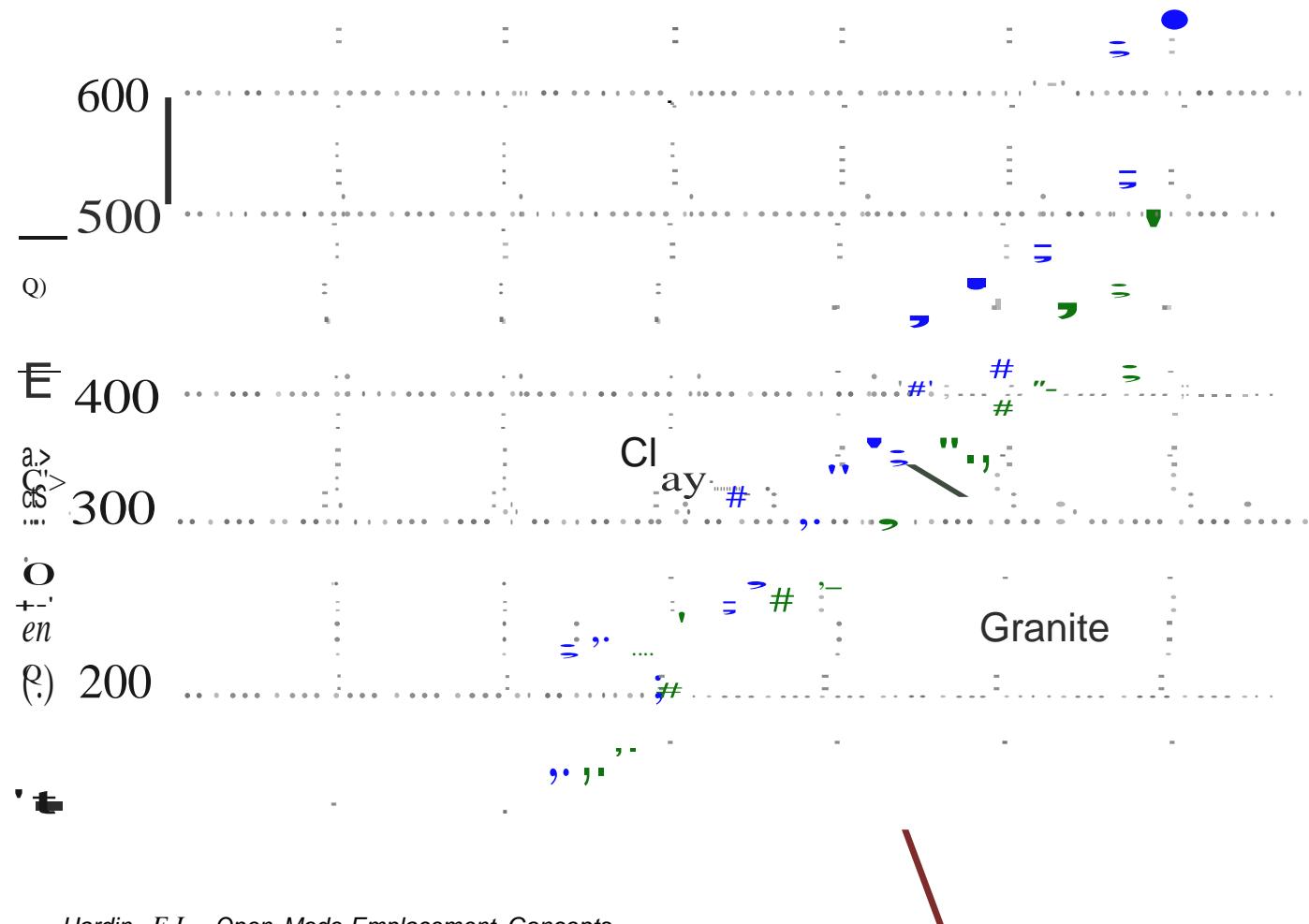
- Initial reference concepts (≤ FY11):
 - ***Clay/shale repository (Andra, Dossier 2005)***
 - ***KBS-3 (vertical) disposal (SKB, SR-Can 2006)***
 - ***Generic salt repository (Carter et al. 2011)***
 - ***Deep borehole concept (Arnold et al. 2011)***

Reference Disposal Concepts (FY11) Example: Mined Clay/Shale, Horizontal Emplacement

- Ref: Based on Andra 2005
- Depth: ~500 m
- Hydrologic setting: Saturated
- Near-field temp. limit: 100°C

Clay/Shale Enclosed Mode for SNF

Disposal Characteristic	SNF	HLW
Emplacement mode	Horizontal, in drift	Horizontal, boreholes
Overpack material	Steel	Steel
Package spacing, m	10	6
Drift (borehole) spacing, m	30	30
Borehole liner material	Steel	Steel
Buffer material	Bentonite clay	-
Backfill material	Crushed clay/shale	Crushed clay/shale


Andra 2005. *Dossier 2005 argile – architecture and management of a geological disposal system*. December 2005. <http://www.Andra.fr/international/download/Andra-international-en/document/editions/268va.pdf>.

- **Temperature limits selected for this analysis are based on material degradation properties**
 - 100°C for clay/shale media and buffer material (e.g., SKB and Andra programs)
 - 200°C for salt (e.g., Salt Repository Project 1986, current German work)
 - No limit identified for deep crystalline basement rock
- **Differences between concepts >> uncertainty in temperature limits**
- **Final temperature constraints will be site- and design-specific**

Used
Fuel
Disposition

Thermal Analysis Results (FY11)

Surface Storage Limits Package Size, for Crystalline and Clay/Shale Concepts

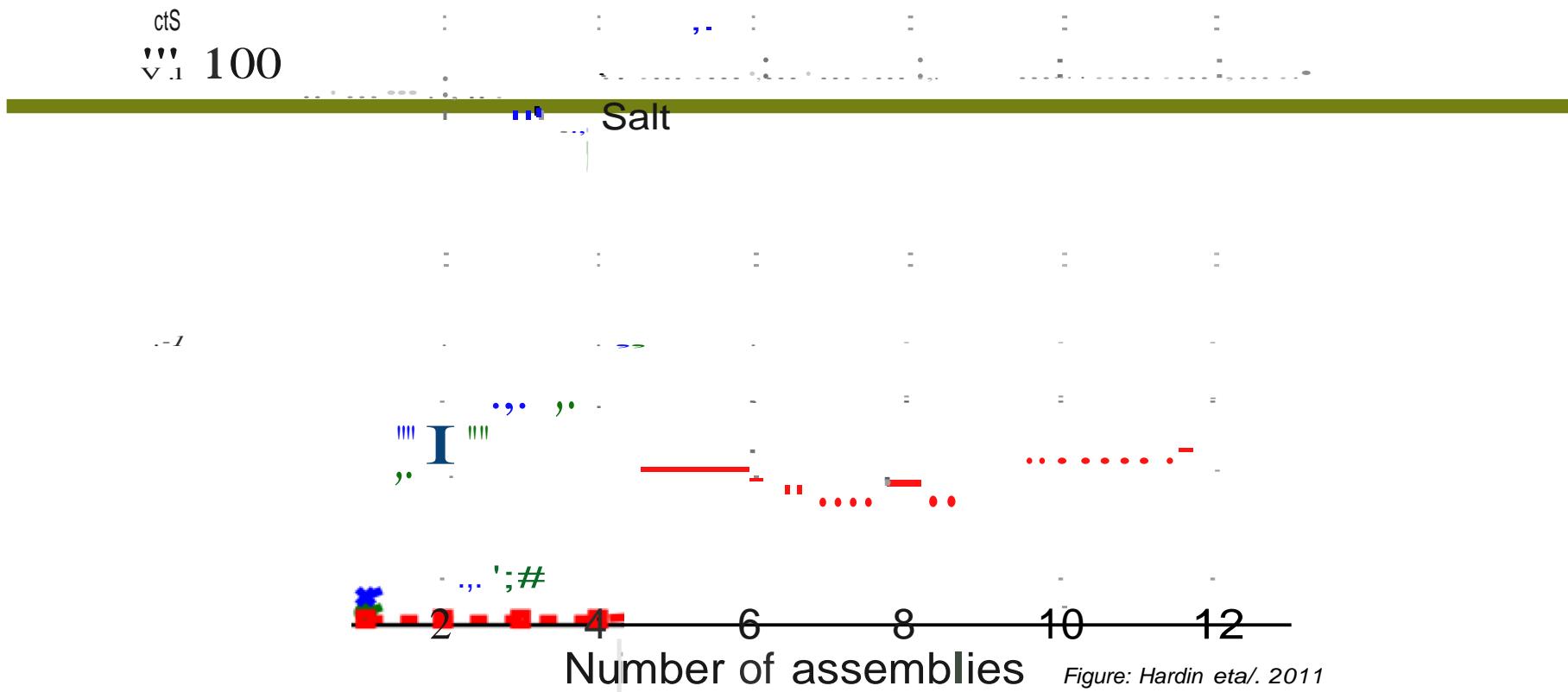


Figure: Hardin et al. 2011

Thermal Analysis Results

Effect of Varying the 100°C/200°C Temperature Limits

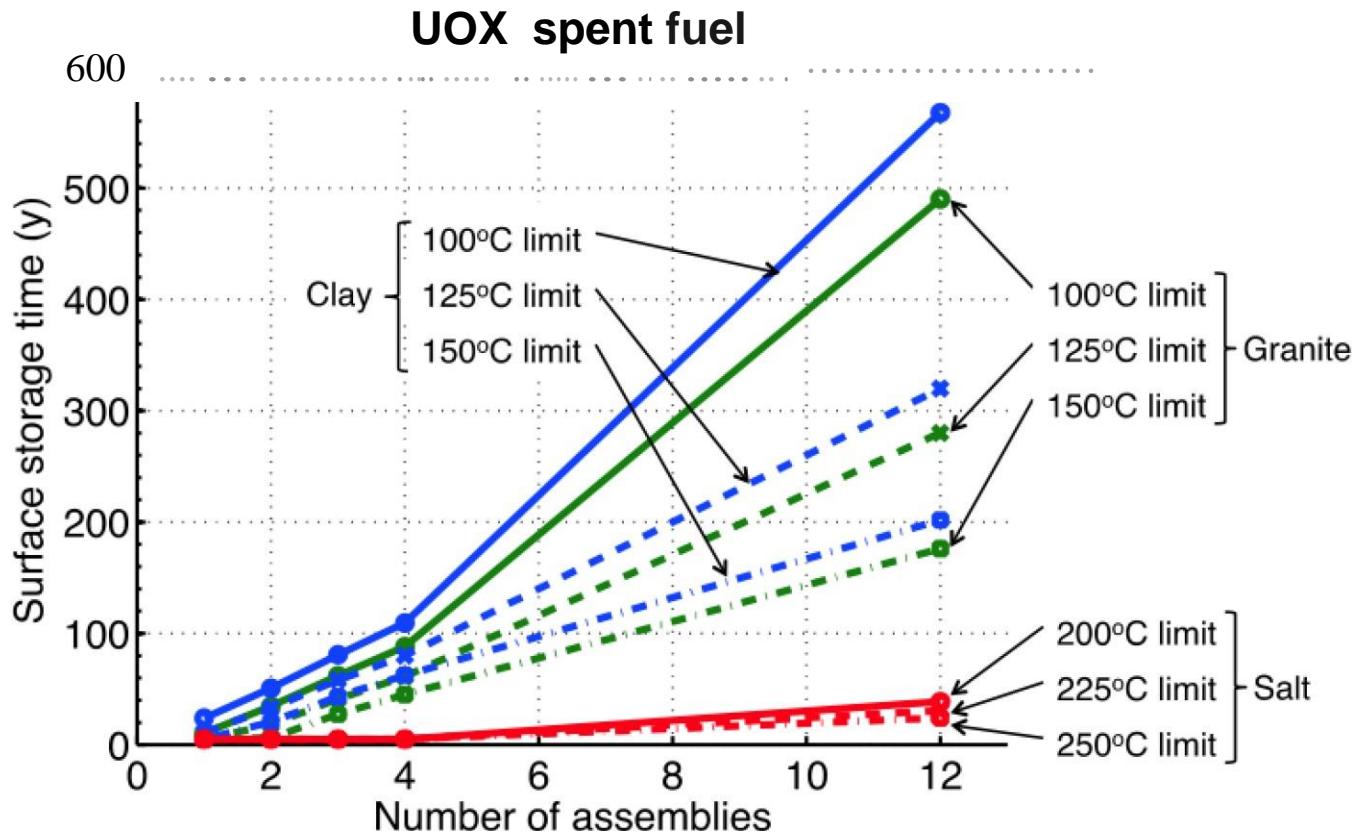
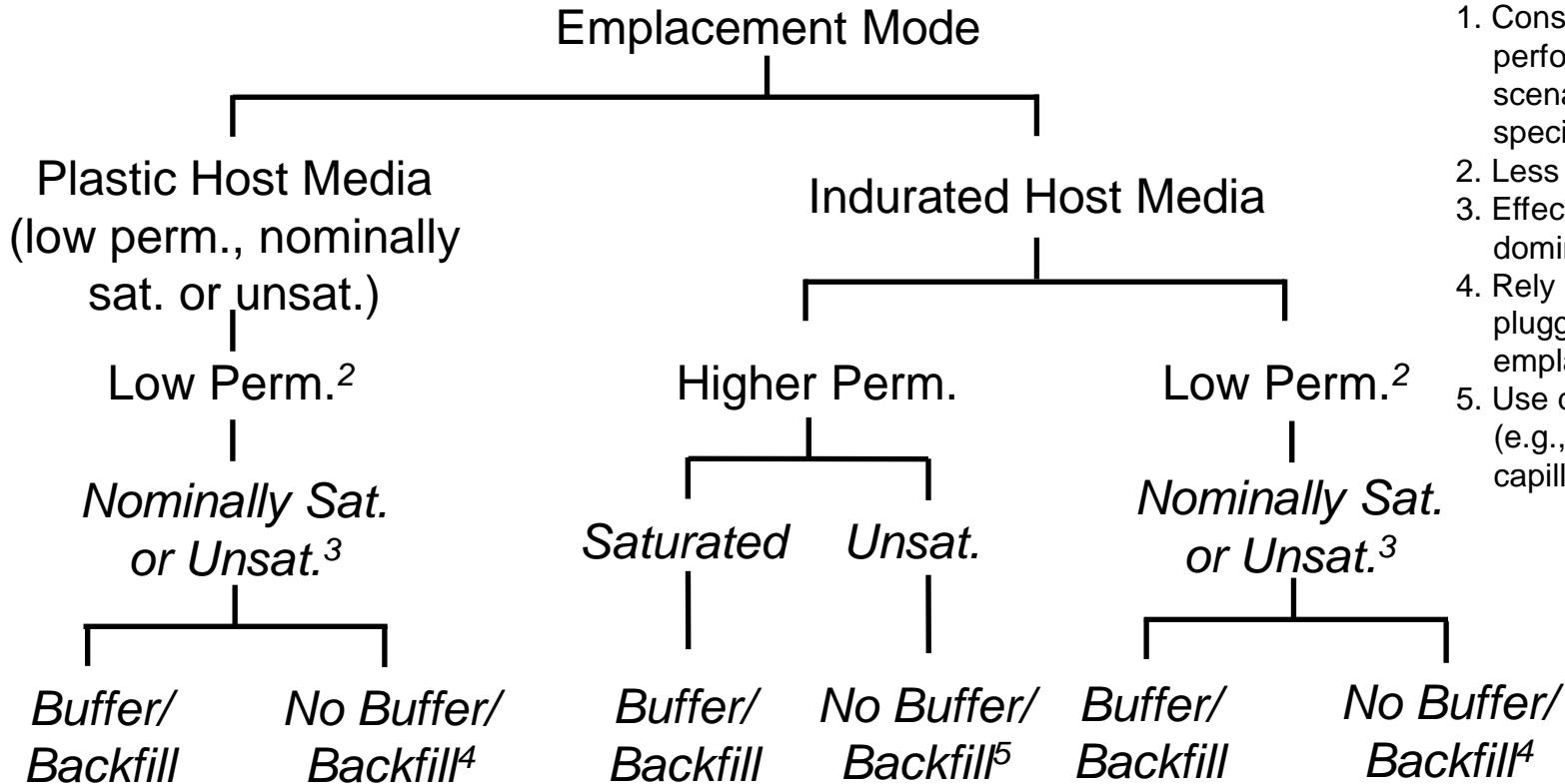


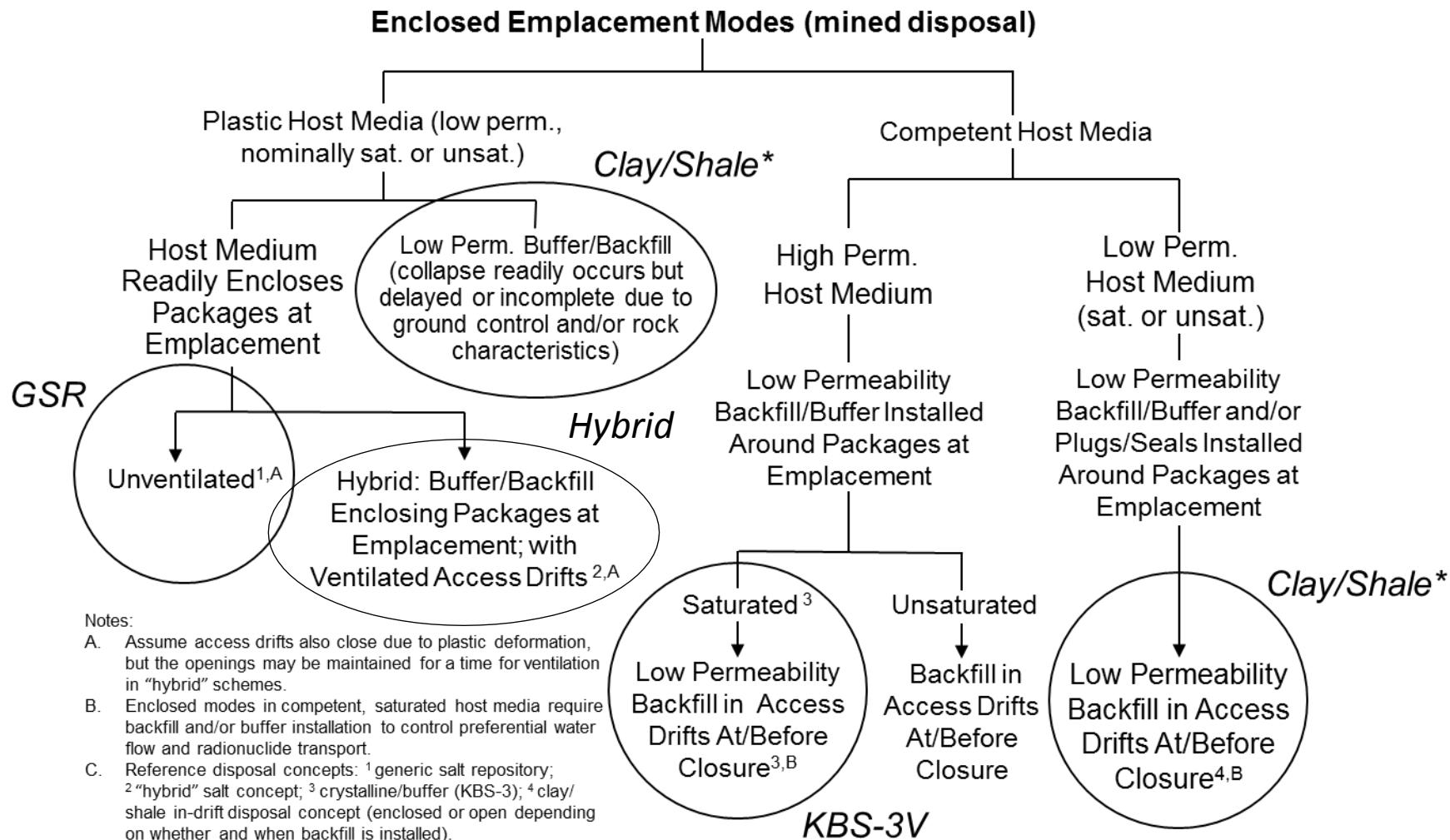
Figure: Sutton et al. 2012 (in review)

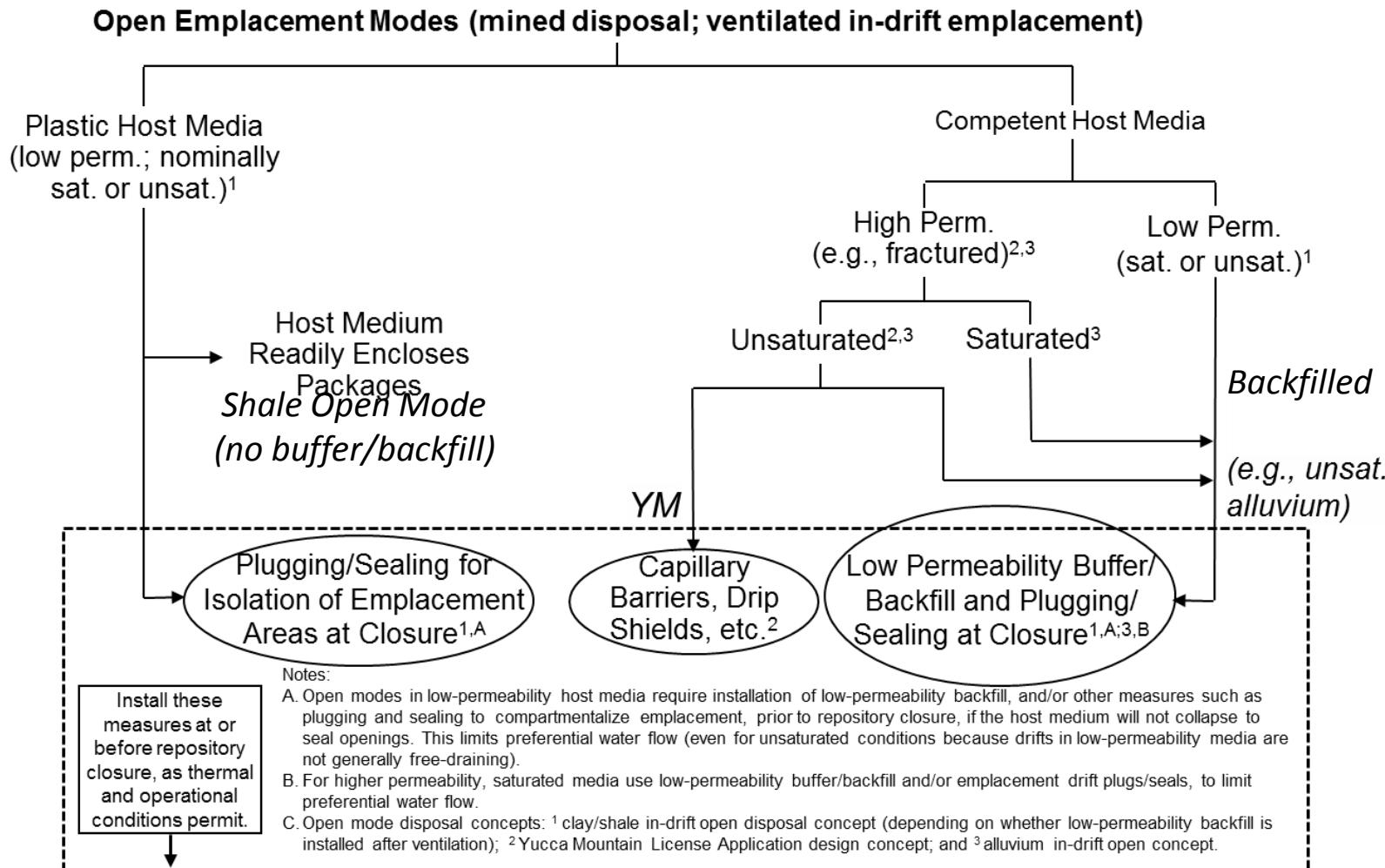
What's missing here?


Mined Disposal Concepts: Open vs. Enclosed Emplacement Modes

■ The emplacement mode directly affects repository thermal management

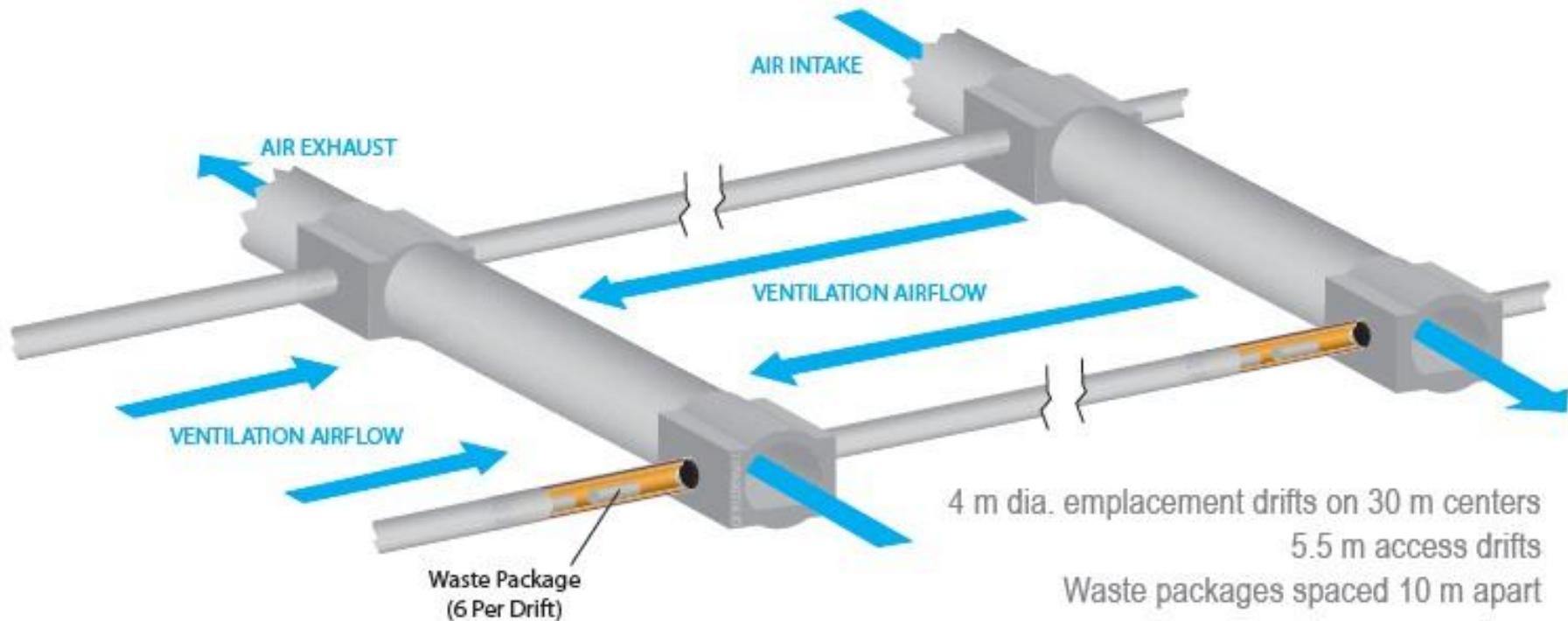
- Open: excavated emplacement openings persist
 - *Heat spread by thermal radiation across gaps*
 - *Pre-closure ventilation (e.g., Yucca Mountain LA)*
- Enclosed: emplacement openings enclose waste packages (salt, clay/shale) and/or clay buffer surrounds the waste package (crystalline rock)
 - *Greater near-field thermal resistance → higher temperature at the waste package (e.g., KBS-3, Dossier 2005, other international concepts)*


- Potential advantages/disadvantages for open modes
 - System Operation
 - *Fewer transport operations and less transport distance for SNF*
 - *Minimize repackaging*
 - *Eliminate interim storage*
 - *Earlier investment in disposal facilities (minimal overpack?)*
 - *Completely reversible/reusable*
 - *Preclosure ventilation and other care-taker costs*
 - System Economics
 - *Defer disposal by 50 to 100 yrs, vs.*
 - *Earlier disposal emplacement, preclosure ventilation, long-term monitoring, eventual closure*
 - *Inter-generational equity*
 - Similar to YM concept


Generic Taxonomy¹

1. Consider postclosure performance, nominal scenario (disruption site-specific).
2. Less than $\sim 10^{-16} \text{ m}^2$
3. Effectively diffusion dominated transport.
4. Rely instead on remote plugging/sealing of emplacement openings.
5. Use diversion barriers (e.g., drip shields, or capillary barriers).

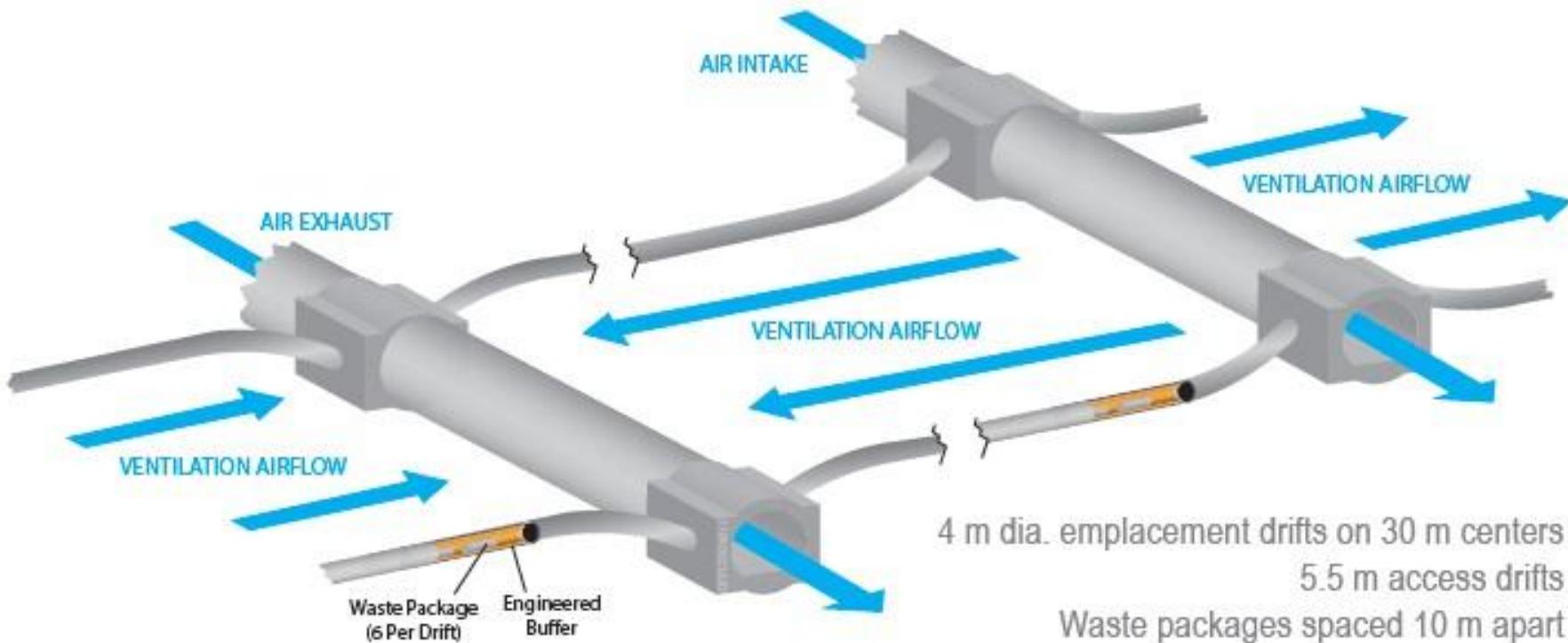
Enclosed Emplacement Mode Taxonomy


- 1. Yucca Mountain LA Disposal Concept**
- 2. Shale Open Emplacement Concept**
- 3. Backfilled Open Emplacement
Concept (e.g., unsat. alluvium)**
- 4. “Hybrid” Concept (salt)**

1. Yucca Mountain LA Disposal Concept

- Comprehensive LA Design Selection Study (OCRWM 1999).
- Addressed requirements of the Nuclear Waste Policy Act (NWPA) including a timetable (302(a)(5)(B))
- Long-term surface decay storage was not included because of restrictions in the NWPA
- Heat output for commercial SNF would be managed with pre-closure ventilation for at least 50 years (all design alternatives considered in the LA design study included this feature)
- Ventilation >50 years provides an option for a cooler repository
- No need for complete backfilling at closure

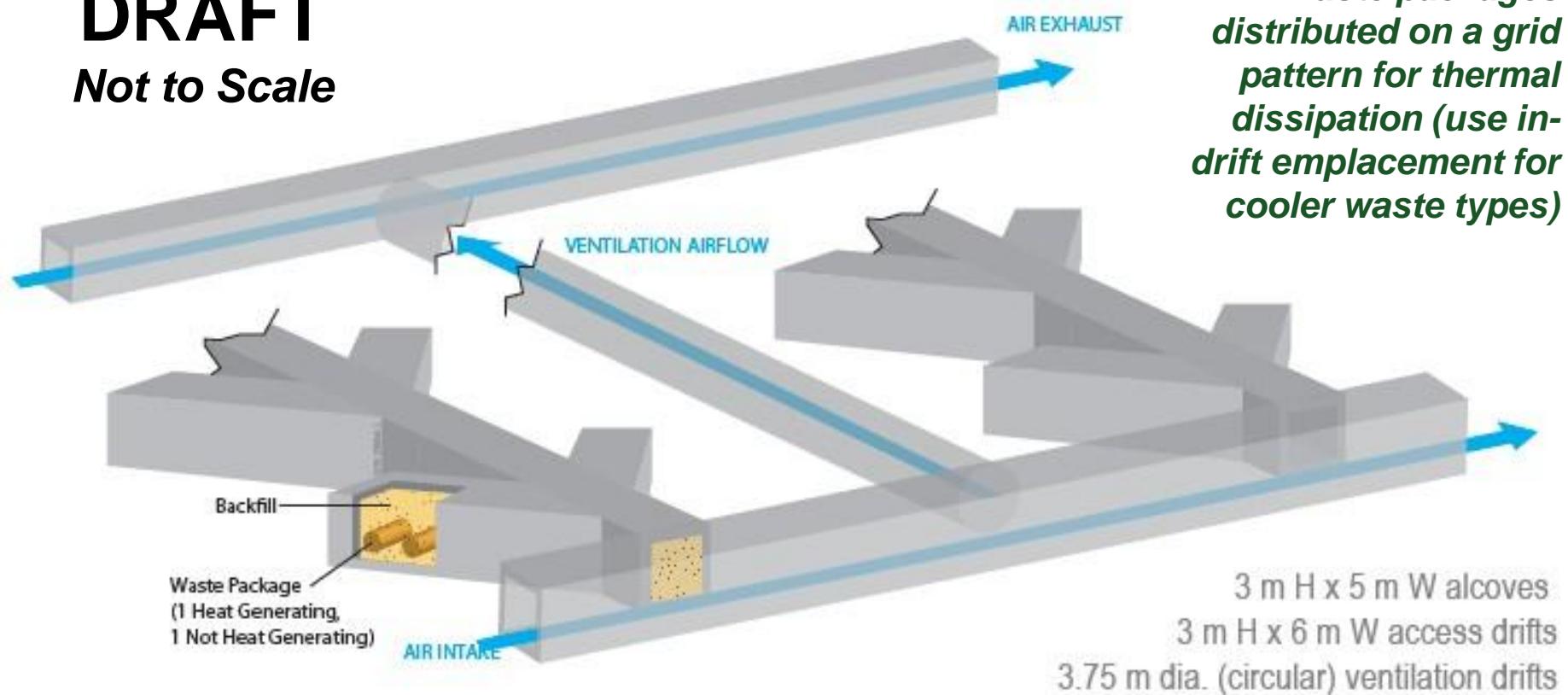
(A similar concept for saturated crystalline rock would require complete backfilling at closure to limit groundwater movement through the repository.)


2. Shale Open Mode Concept for SNF (low permeability, sat. or unsat.)

Drift segments containing small numbers of waste packages are isolated by plugging/sealing (backfill is retained as an option at repository closure).

DRAFT
Not to Scale

3. Backfilled Open Mode for SNF (e.g., unsaturated alluvium)


Drift segments containing small numbers of waste packages are backfilled with low permeability (e.g., clay-rich) material at closure

DRAFT
Not to Scale

4. Salt “Hybrid” Concept for Hotter Waste

Salt has roughly 2X the thermal diffusivity of other potential host media.

DRAFT
Not to Scale

Direct Disposal of Multi-Purpose Canisters (Storage, Transport and Disposal)

Direct Disposal of Dual Purpose (i.e., Multi-Purpose) Canisters

- Magnastor DPC system
- Capacity 37-PWR (equiv.)
- Thermal limits: 35.5 kW storage/24 kW transport
- Fuel cool time ≥ 4 yr OoR

Pictures and data
from NAC
International
website
31Mar2012

- **MPCs will be large (DPCs have typ. 32-PWR capacity)**
 - Stainless steel; approx. 2 m dia. \times 5 m long; loaded mass~ 50 MT; transportation overpack adds 90+ MT
 - Hypothetical disposal overpack (e.g., 2-in. steel, adds 28 MT)
- **Yucca Mountain TAD canisters**
 - Heaviest = Naval SNF, canister weight 44.5 MT; disposal overpack adds 29 MT
- **Avoid repackaging**
 - Cost \$10k to \$100k per MTHM
 - Worker dose associated with canister loading, drying, welding, handling, etc.

- **Disposal Engineering Challenges**

- Conveyance (shaft or ramp) and emplacement (in-drift mode)
 - Thermal management in all operations
 - Underground structural support (e.g., ramp, invert)
 - Large openings (excavation, ground support, maintenance)
 - Plugging and/or backfilling at closure

- **Postclosure Performance Challenges**

- Package containment longevity (design, cost, waste isolation)
 - Effects on groundwater flow and radionuclide transport

- *Waste package size vs. number of packages*
 - *Plug and/or backfill performance*

- Interaction of cementitious materials (shotcrete and concrete)
 - Plumes (e.g., alkaline, radionuclide transport)
 - Criticality analysis (absorber fate, moderator exclusion)

Conclusions

Used Fuel Disposition

How do open emplacement concepts help implement BRC recommendations?

■ Objectives: Help implement BRC recommendations

5. Prompt efforts to develop geologic disposal facility(s)
6. Prompt efforts to develop consolidated storage facility(s)
7. Prepare for large-scale transport of SNF and HLW

■ Prompt efforts → Multi-purpose canisters

Integrate storage, transport and disposal in system design

■ Multi-purpose canisters → Direct disposal

Engineering challenges

Postclosure performance challenges

■ Direct disposal → Open emplacement modes

Incorporate open-mode reference concepts in UFD R&D program

■ Add 3 Open-Mode Reference Cases (+ YM)

■ Shale Open Mode Concept

- Low permeability host rock, limited water inflow even for saturated settings
- Backfill or plug/seal at closure (e.g., swelling clay-based material if needed)
- Technical issues: ground stability and support (shotcrete, concrete), desiccation, choice of plugging/sealing or backfilling strategies

■ Backfilled Open Mode Concept

- Wide variety of potentially suitable host media (e.g., unsaturated alluvium)
- Backfill at closure (low permeability, e.g., crushed host rock, swelling clay)
- Technical issues: ground stability and support (shotcrete, concrete), backfilling operations, waste package longevity strategy

■ “Hybrid” Concept (Salt)

- Waste isolation performance and heat dissipation advantages of salt
- Lower peak salt temperature ~50 C° (similar to 20+ yr aging)
- Technical issues: heat-removal efficiency and salt creep

■ Open Emplacement Modes:

- Facilitate direct disposal of existing, large dual-purpose canisters (DPCs)
- Permit a greater range of options (e.g., size, heat output) for future multi-purpose, standardized canisters (e.g., TAD canister system design)
- Enable lower cost direct-disposal concepts
- Allow earlier disposal (including “equity” policy options)
- Readily demonstrate retrievability and reversibility

■ Engineering and Performance Modeling Challenges

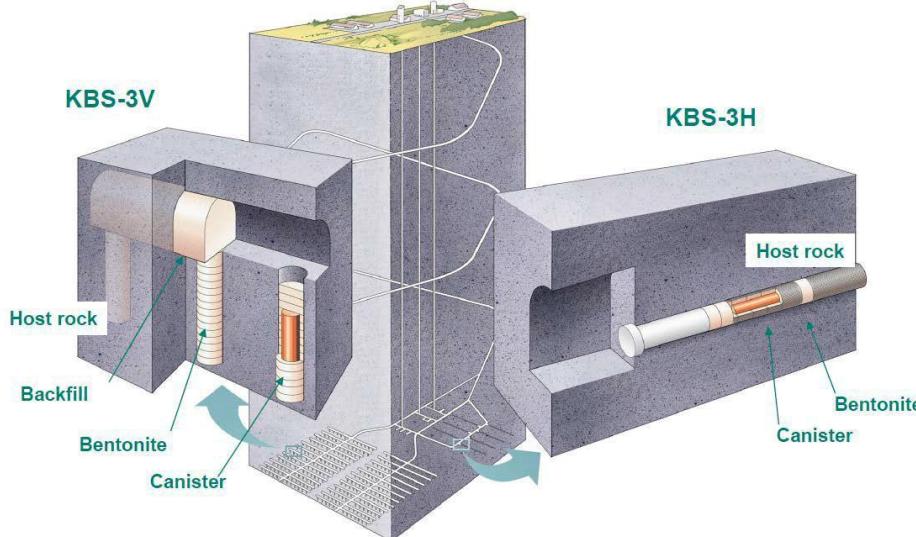
- Cementitious materials in the repository
- Backfilling at closure
- Repository handling and transport for larger, heavier waste packages
- Waste package longevity strategy
- Postclosure criticality for existing DPCs (or MPCs)
- Related to pre-closure ventilation (feasibility, deliquescence, etc.)

Backup Slides

Ongoing Work

- **Develop reference enclosed and open emplacement mode concepts**
 - Develop safety strategies for reference concepts
 - Describe facilities (pre-conceptual), including larger waste packages, conveyances, and emplacement subsystems
 - Cost estimates for comparison
- **Additional waste streams (e.g., existing LWR SNF inventory at ~40 GW-d/MTHM)**
 - Thermal analysis
- **Higher temperature limits (e.g., 250°C in salt)**
 - FEP-based approach
- **Plan new R&D for direct disposal of large MPCs**

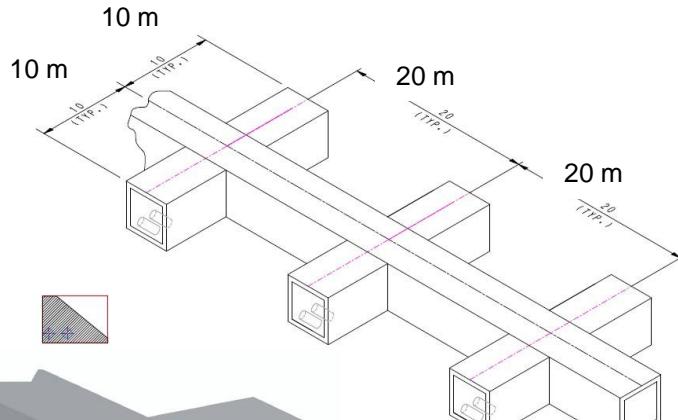
■ Eight Recommendations


1. *New, consent-based approach to siting*
2. *New organization*
3. *Access to nuclear waste management funds*
4. *Prompt efforts to develop geologic disposal facility(s)*
5. *Prompt efforts to develop consolidated storage facility(s)*
6. *Prepare for large-scale transport of SNF and HLW*
7. *Support for U.S. innovation in NE technology and workforce development.*
8. *Active U.S. leadership in international efforts (safety, waste management, non-proliferation, security)*

■ Section 2.3.1 Ethical Responsibility

“...the generations who created these wastes and benefited from the activities that produced them have an obligation to ensure that the entire burden of providing for their disposal does not fall to future generations. That means mustering, without further delay, the financial, programmatic, institutional, and political wherewithal to implement a functional system to manage these materials that provides for their safe transportation, consolidated storage, and disposal....the capability to provide for disposal must exist and the process of emplacing long-lived radioactive wastes, including particularly those materials with no realistic possibility of being re-used, must be underway within a reasonable timeframe.”

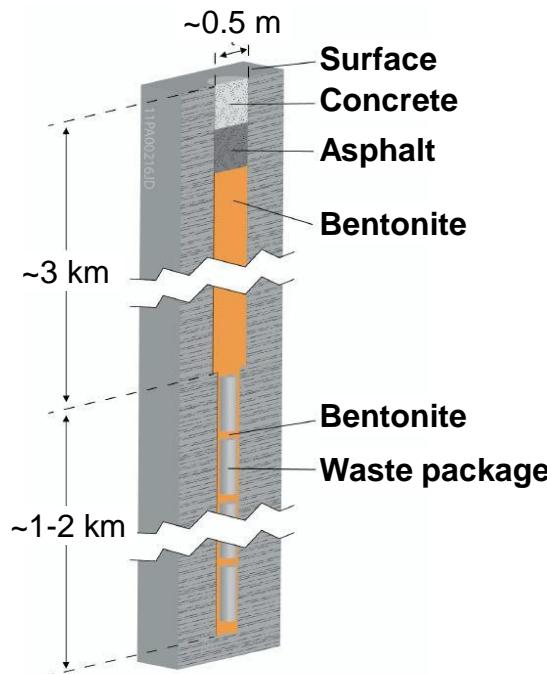
“....this generation’s responsibility to future generations includes taking care not to foreclose options that future generations may see as being in their best interest...future generations may want to use spent fuel as an energy resource. A well-constructed waste management program....can...provide a solution and leave choices.”


- Ref: Based on KBS-3 (SKB 2006)
- Depth: ~500 m
- Hydrologic setting: Saturated
- Buffer temperature limit: 100°C

Disposal Characteristic	SNF	HLW
Emplacement mode	Vertical boreholes	Vertical boreholes
Overpack material	Copper or steel	Steel
Borehole spacing, m	10	10
Drift spacing, m	20	20
Borehole liner material	-	-
Buffer material	Bentonite clay	Bentonite clay
Backfill material	Clay/sand mixture	Clay/sand mixture

SKB (Swedish Nuclear Fuel and Waste Management Co.) 2006.
Long-term safety for KBS-3 repositories at Forsmark and Laxemar—A first evaluation. Technical Report TR-06-09.

- Ref: Generic Salt Repository (Carter et al. 2011)
- Depth: ~500 m
- Hydrologic setting: Saturated
- Salt temperature limit: 200°C



Repository characteristic	SNF	HLW
Emplacement mode	Horizontal, in alcoves	Horizontal, in alcoves
Overpack material	Steel	Steel
Alcove spacing, m	20	20
Access drift spacing, m	40	40
Borehole liner material	-	-
Buffer material	-	-
Backfill material	Crushed/compact salt	Crushed/compact salt

Carter, J.T., F. Hansen, R. Kehrman, and T. Hayes 2011a. *A generic salt repository for disposal of waste from a spent nuclear fuel recycle facility.*
SRNL-RP-2011-00149 Rev. 0. Savannah River National Laboratory.

Reference Disposal Concepts (FY11) Deep Borehole

- Ref: SNL and MIT studies
- Depth: 3 to 5 km
- Hydrologic setting: Saturated
- Temperature constraint: None

Disposal Characteristic	SNF	HLW
Emplacement mode	Vertical, stacked	Vertical, stacked
Overpack material	Steel	Steel
Package spacing, m	6	6
Borehole spacing, m	200	200
Borehole liner material	Steel	Steel
Buffer material	Water/mud	Water/mud
Backfill material	-	-

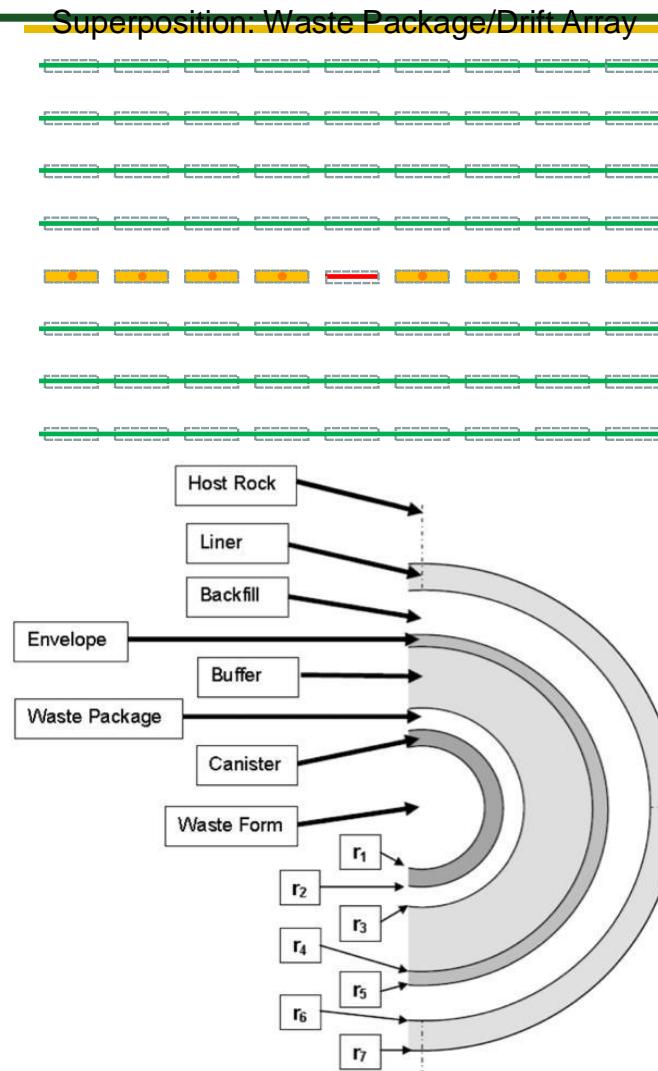
Brady, P.V., B.W. Arnold, G.A. Freeze, P.N. Swift, S.J. Bauer, J.L. Kanney, R.P. Rechard, and J.S. Stein 2009. *Deep borehole disposal of high-level radioactive waste*. SAND2009-4401. Sandia National Laboratories.

Reference Enclosed Mode Concept Specifics

Geologic Media/Concept	Mined Granite	Mined Clay/shale	Mined Salt	Deep Borehole
Repository depth	500 m	500 m	500 m	>3000 m
Hydrologic setting	Saturated	Saturated	Saturated	Saturated
Emplacement mode (UNF)	Horizontal emplacement, boreholes in wall	Horizontal emplacement, boreholes in wall	Horizontal emplacement, boreholes in wall	Vertical emplacement, stacked
Emplacement mode (HLW)	Same	Same	Horizontal emplacement in alcoves	Same
Normalized areal loading (GWe-yr/acre) *	1 to 10	1 to 10	1 to 10	<1
Drift/borehole spacing	20 m	20 m	20 m	>100 m
Drift/borehole diameter	~1 m	~1 m	~1 m boreholes; 4 m for alcoves	>30 cm
Waste package arrangement	Point	Line	Point for SNF boreholes; point for HLW in alcoves	Line
Liner material	Steel	Steel	Not used	Steel
Overpack material	Copper or steel	Steel	Steel	Steel
Maximum SNF waste package capacity (size)	4-PWR	4-PWR	12-PWR	1 PWR assembly
Buffer material	Bentonite clay	Not used	Not used	Bentonite clay
Radiation shield plug	Required	Required	Required	Not used
Backfill material	Clay/sand mixture	Clay/shale	Crushed salt	Not used
Invert material	Reinforced concrete	Reinforced concrete	Reinforced concrete	Not used
Ground support material	Rockbolts, wire cloth & shotcrete	Steel sets & shotcrete	Rockbolts	Not used
Seals and plugs	Shaft and tunnel	Shaft and tunnel	Shaft and tunnel	Not used

* Magnitude of allowable thermal loading for these concepts depends on waste heat output at emplacement.

Six Heat-Generating Waste Types

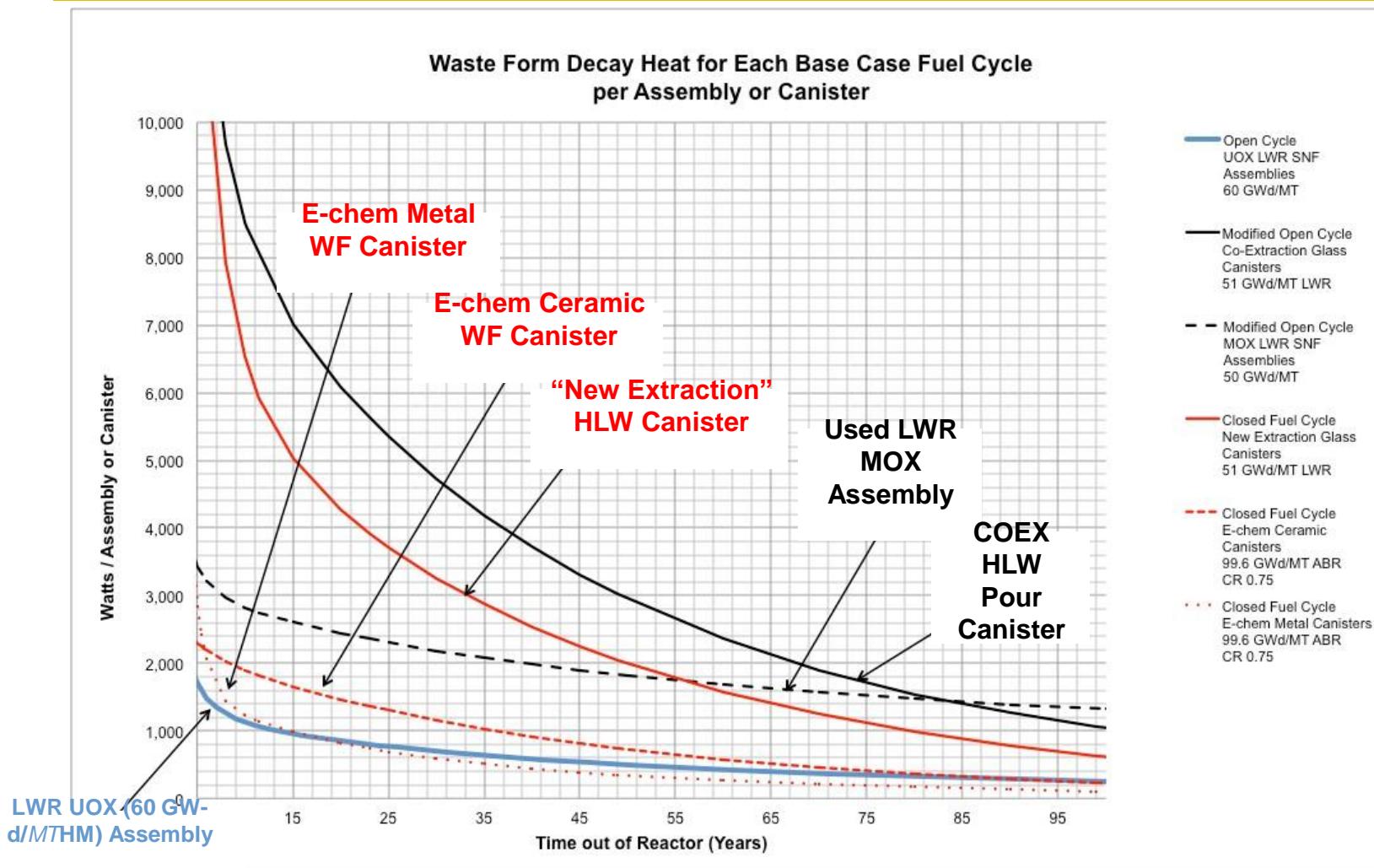

Strategy Sampled	Description	Waste Types (Carter et al. 2011a)	Example Source
Once-Through	Direct disposal of high-burnup (60 GW-d/MTHM) LWR UOX SNF	<ul style="list-style-type: none"> • UOX SNF 	<ul style="list-style-type: none"> • Generation III+ LWRs
Modified-Open	Reprocessing of LWR UOX used fuel (51 GW-d/MTHM) to produce MOX fuel that is used once (50 GW-d/MTHM) then directly disposed	<ul style="list-style-type: none"> • MOX SNF • Co-Extraction HLW borosilicate glass 	<ul style="list-style-type: none"> • “Transitional” variation of the French strategy with direct disposal of MOX SNF • Irradiated MOX fuel from Pu-disposition program (~500 MTHM)
Closed	Reprocessing of LWR UOX used fuel (51 GW-d/MTHM) to produce U-TRU metal fuel for SFRs (0.75 conversion ratio), and repeated recycle of the SFR used fuel (99.6 GW-d/MTHM)	<ul style="list-style-type: none"> • “New-Extraction” HLW borosilicate glass • Electrochemical ceramic HLW • Electrochemical fission- product metal HLW 	<ul style="list-style-type: none"> • “Transitional” fast-spectrum burner strategy with TRU recycling

■ Conduction-only heat transfer

- Convection negligible in low-permeability rock and EBS materials
- Timing of peak temperature (1 to 30 years after emplacement) limits formation of convection cells
- No significant voids (i.e., no radiative transfer)
- Demonstrated suitable for first-order prediction

■ Waste package surface peak temperature

- Maximum EBS temperature outside the waste package
- Waste packages and waste forms withstand greater temperatures
- Package internal thermal performance indexed to external surface temperature
- Other measures (e.g., time-temperature) depend on design

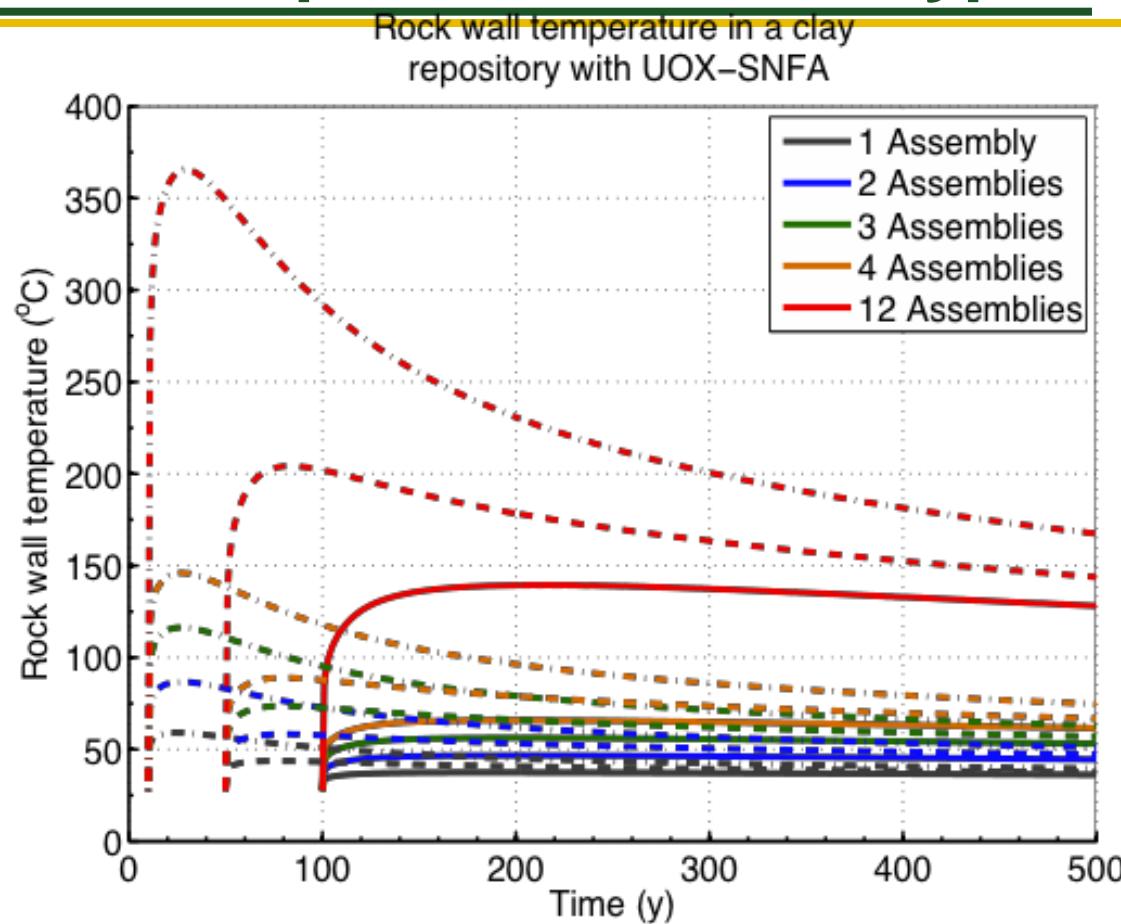


Semi-analytical

- Evaluate temperature histories on waste package outer surface
- Multiple combinations of waste types, age, and disposal concepts

- **Compare peak temperatures with assumed limits for engineered or natural materials**
- **Estimate decay storage duration needed for each disposal concept and waste type**
 - For SNF plot decay storage duration vs. # of assemblies per waste package

HLW Glass Heat Outputs are Highest in the Near Term, MOX SNF in the Long Term

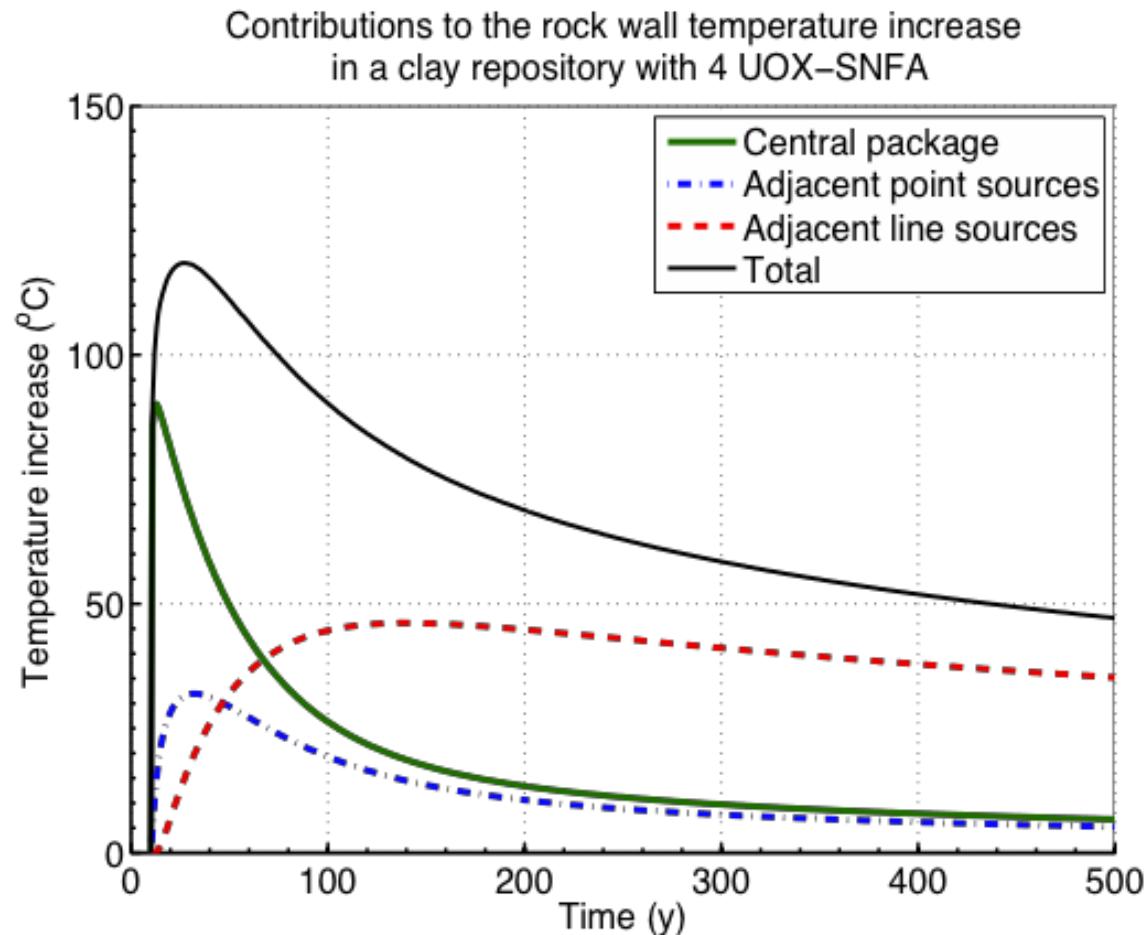


Thermal Analysis (FY11) Temperature Histories for 4 Disposal Concepts and 6 Waste Types

■ Example

■ Clay/shale repository

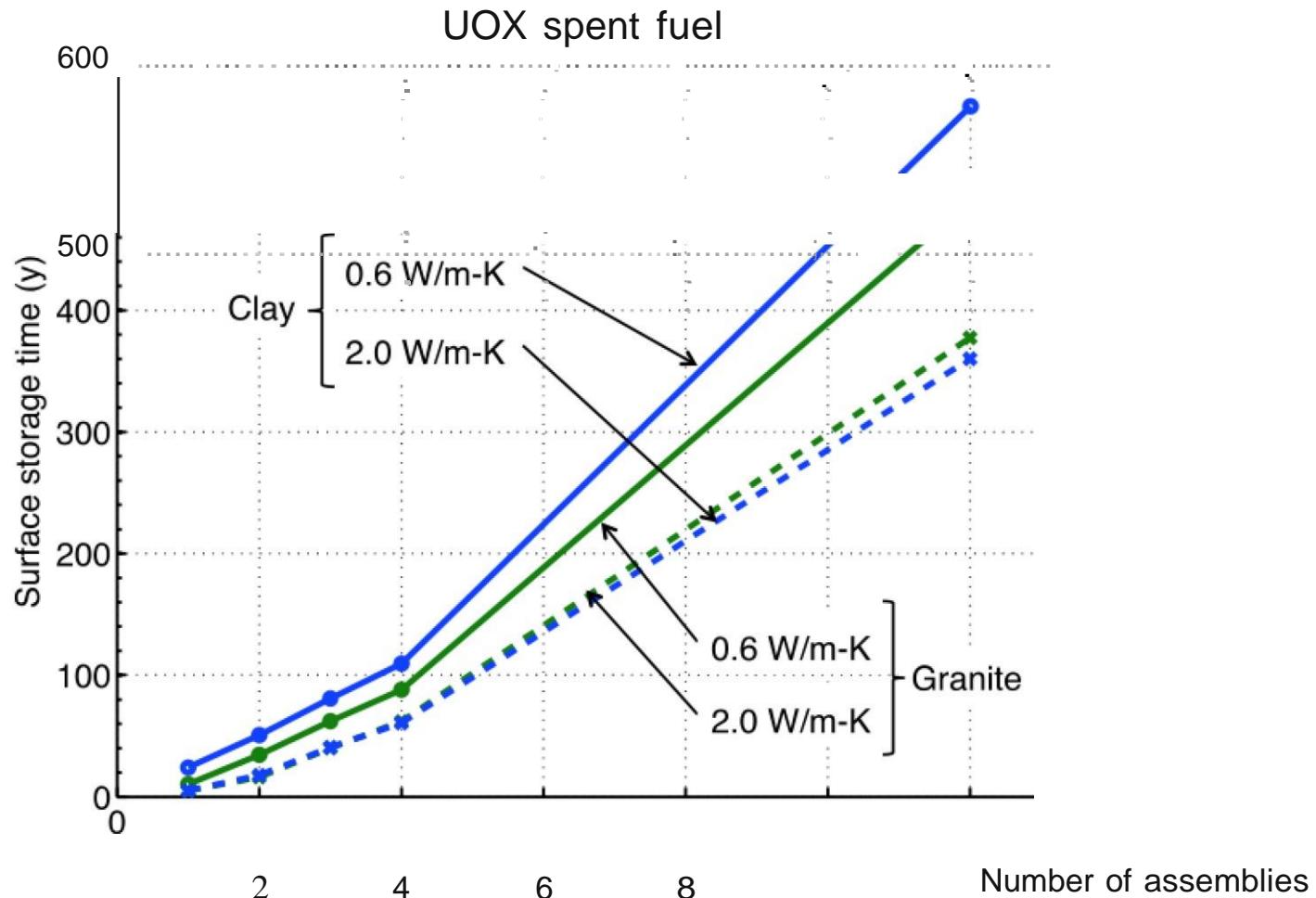
- Results for host rock temperature (at EBS boundary)
- LWR UOX SNF (60 GW-d/MTHM)
- Calculate for different package size/capacity



Thermal Analysis (FY11) Relative Contributions to Transient Temperature Histories

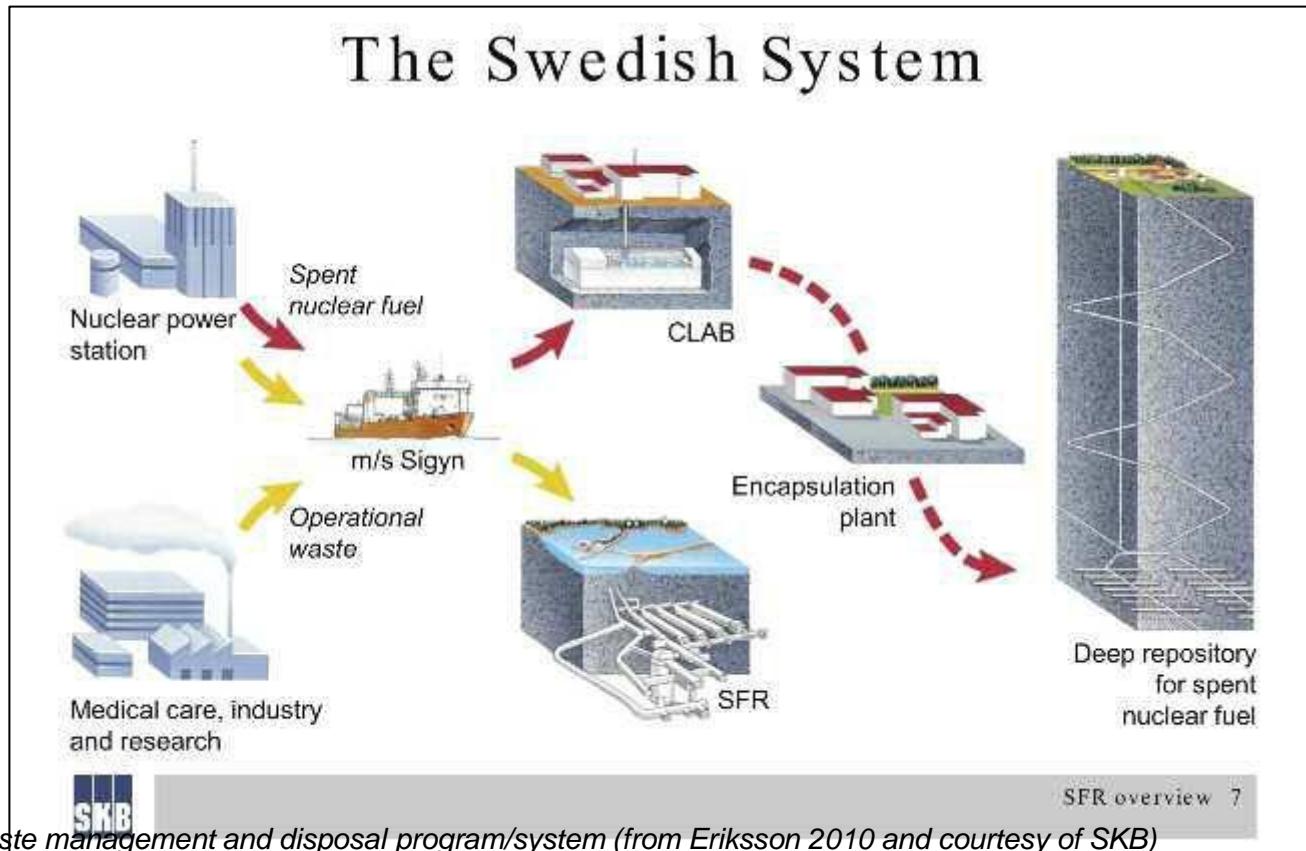
■ Example

■ Relative contributions to calculated host rock temperature (at EBS boundary)


- LWR UOX SNF (60 GW-d/MTHM)
- 10-yr age out-of-reactor
- 4-PWR package

Disposal Scenario			Peak Temperature at the Waste Package Surface, °C			
Geology	Waste Type	Assemblies/ Package	Decay Storage Duration			
			10 yr	50 yr	100 yr	200 yr
Crystalline (100°C)	UOX SNF	4	256.9	141.2	92.8	68.9
	MOX SNF	1	229.8	172.9	144.0	116.2
Clay/Shale (100°C)	UOX SNF	4	341.9	174.0	106.4	72.9
	MOX SNF	1	288.6	203.4	161.8	126.8
Salt (200°C)	UOX SNF	4	139.9	81.8	57.9	45.7
	MOX SNF	1	120.8	93.1	79.0	65.9
Deep borehole	UOX SNF	1	186.4	161.9	151.7	146.3
	MOX SNF	1	264.5	224.1	202.9	184.7

Thermal Analysis Results


Effect of Buffer Thermal Conductivity

- Nominally 40 yr of decay storage (CLAB)
- FY11 reference calculation: ~100 yr for 60 GWd/MT burnup

→ Agreement will be reasonable (with correction for burnup)

Schematic of the Swedish nuclear waste management and disposal program/system (from Eriksson 2010 and courtesy of SKB)

CLAB = Central facility for long-term (30–40 years) storage of SNF, opened in 1985

SFR = Repository for long-lived LLW and ILW, opened in 1988

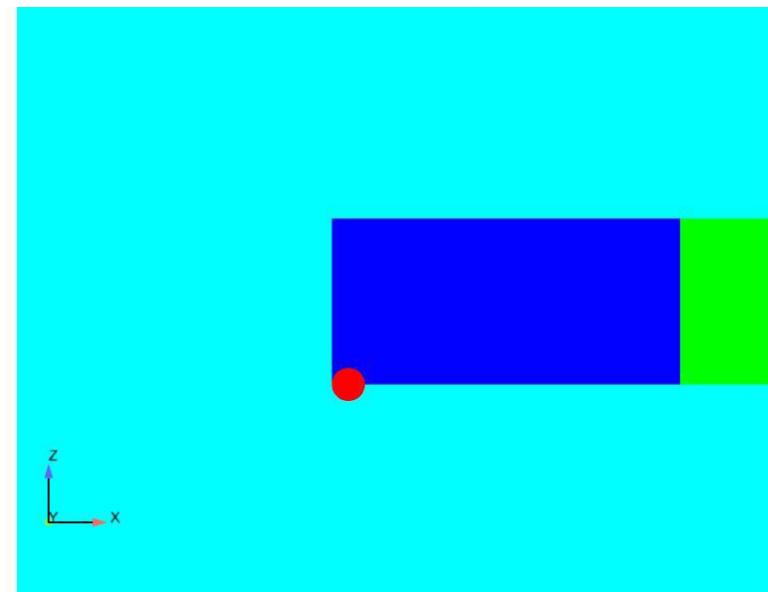
Dark arrows depict SNF, light arrows depict LLW and ILW. Dashed arrows lead to planned facilities (regular operation ~ 2025)

■ Based on geometry used in earlier generic salt repository thermal calculations

- Sierra Mechanics (see Clayton & Gable 2009)

■ SNF

- 4, 12, 21 & 32-PWR packages
- 40 & 60 GW-d/MTHM
- Aged 10, 20 and 50 yr OoR


■ HLW

- 15 ft. and 9 ft. long packages
- Aged ~37 years

■ Coupling

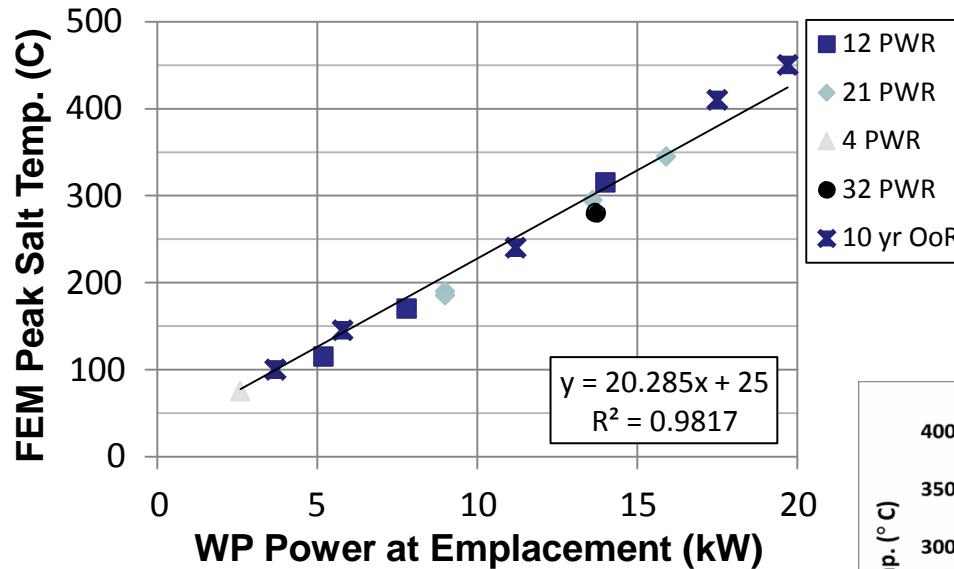
- Thermal-mechanical (intact salt, crushed salt backfill)
- Backfill thermal conductivity ← consolidation

2-D Vertical Cross-Section
Along Alcove Centerline

■ **Used Arpeggio code (Sierra Mechanics) to externally couple**

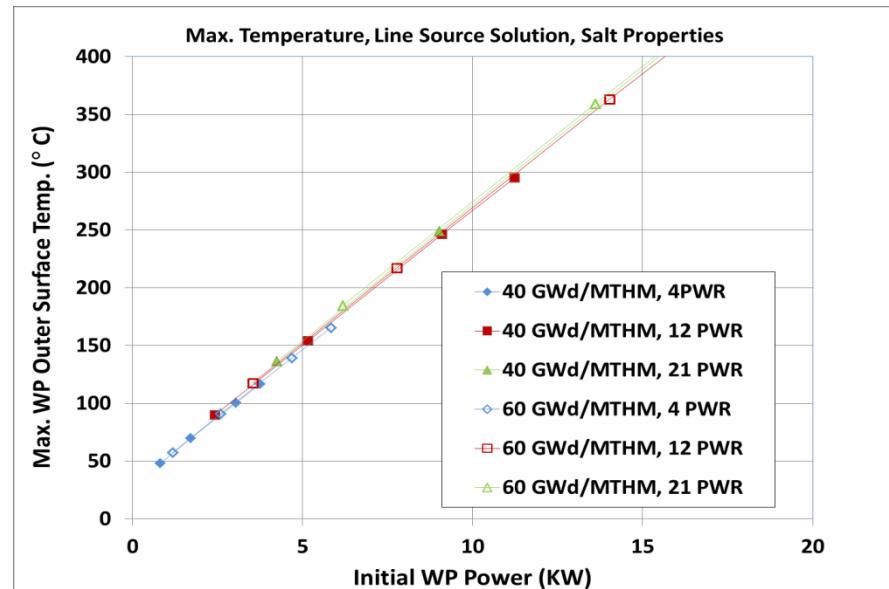
- Aria (Galerkin finite element based program for solving coupled-physics problems described by systems of partial differential equations, e.g., energy and mass flow)
- Adagio (Lagrangian mechanical modeling program with special provisions for modeling salt deformation)
- Same or different grids, one input file

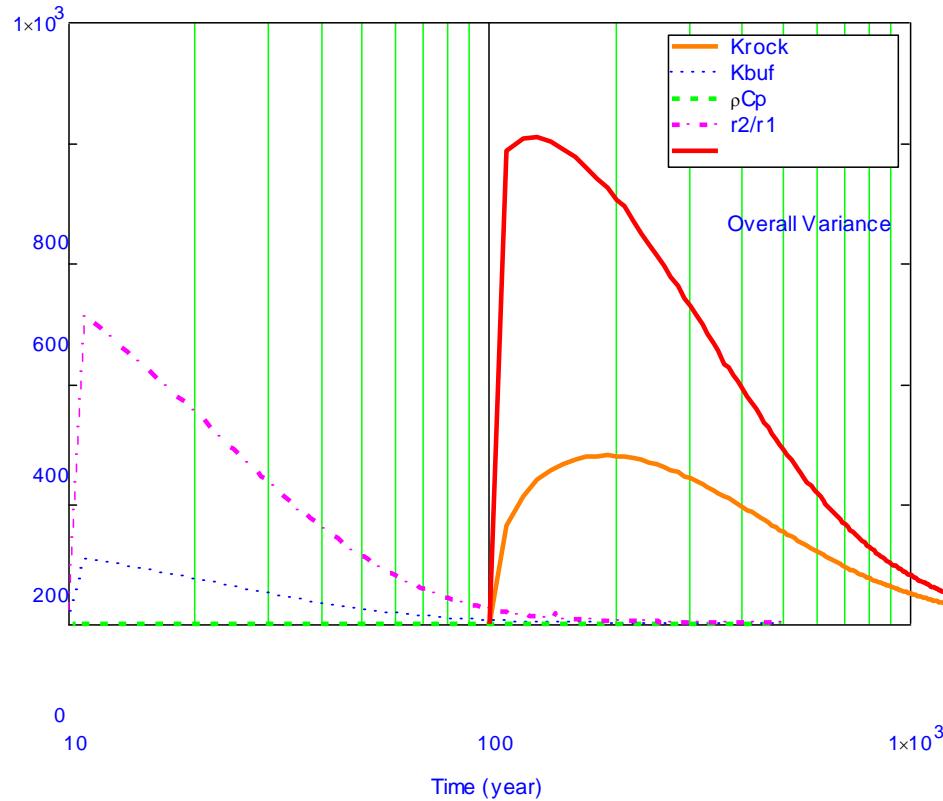
■ **Includes updated salt and crushed salt constitutive models**


Used Fuel Disposition

FEM Results Summary

- **Oldest SNF (~50 yr OoR) can be emplaced now in 21-PWR WPs**
- **Large canisters (e.g., 32-PWR) can be emplaced <100 yr OoR**


WF	Package type	WP Dimensions	Fuel burnup	MTIHM	Age OoR, yr	Heat output	Model run	Ventilation	~ Peak Salt T, C
WASTE PACKAGE SIZE : 40 and 60 GW-d/MT BURNUP (10 yr AGE OoR)									
UNF	4-PWR	0.82 m D x 5.00 m L	40 GWd/t	1.88	10	3.7 kW	T, 200 yr	No	100
UNF	4-PWR	0.82 m D x 5.00 m L	40 GWd/t	1.88	10	3.7 kW	TM, 200 yr	No	100
UNF	4-PWR	0.82 m D x 5.00 m L	60 GWd/t	1.88	10	5.8 kW	T, 200 yr	No	145
UNF	12-PWR	1.29 m D x 5.13 m L	40 GWd/t	5.64	10	11.2 kW	T, 200 yr	No	240
UNF	12-PWR	1.29 m D x 5.13 m L	60 GWd/t	5.64	10	17.5 kW	T, 200 yr	No	410
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	10	19.7 kW	T, 200 yr	No	450
AGING STUDY: 40 and 60 GW-d/MT BURNUP (50 yr AGE OoR)									
UNF	4-PWR	1.29 m D x 5.13 m L	60 GWd/t	1.88	50	2.6 kW	T, 200 yr	No	75
UNF	12-PWR	1.29 m D x 5.13 m L	40 GWd/t	5.64	50	5.2 kW	T, 200 yr	No	115
UNF	12-PWR	1.29 m D x 5.13 m L	60 GWd/t	5.64	20	14.0 kW	T, 200 yr	No	315
UNF	12-PWR	1.29 m D x 5.13 m L	60 GWd/t	5.64	50	7.8 kW	T, 200 yr	No	170
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	20	15.9 kW	T, 200 yr	No	345
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	50	9.0 kW	T, 200 yr	No	190
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	50	9.0 kW	TM, 200 yr	No	185
UNF	21-PWR	1.60 m D x 5.13 m L	60 GWd/t	9.87	50	13.6 kW	T, 200 yr	No	295
UNF	32-PWR	2.00 m D x 5.13 m L	40 GWd/t	15.04	50	13.7 kW	T, 200 yr	No	280
VENTILATION STUDY									
UNF	12-PWR	1.29 m D x 5.13 m L	40 GWd/t	5.64	10	11.2 kW	T, 200 yr	1.58 W/m ² /K	205
UNF	12-PWR	1.29 m D x 5.13 m L	60 GWd/t	5.64	10	17.5 kW	T, 200 yr	1.58 W/m ² /K	350
UNF	12-PWR	1.29 m D x 5.13 m L	60 GWd/t	5.64	20	14.0 kW	T, 200 yr	1.58 W/m ² /K	265
UNF	12-PWR	1.29 m D x 5.13 m L	60 GWd/t	5.64	50	7.8 kW	T, 200 yr	1.58 W/m ² /K	145
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	10	19.7 kW	T, 200 yr	9.95 W/m ² /K	345
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	10	19.7 kW	T, 200 yr	1.58 W/m ² /K	360
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	20	15.9 kW	T, 200 yr	1.58 W/m ² /K	280
UNF	21-PWR	1.60 m D x 5.13 m L	40 GWd/t	9.87	50	9.0 kW	T, 200 yr	1.58 W/m ² /K	150
UNF	21-PWR	1.60 m D x 5.13 m L	60 GWd/t	9.87	50	13.6 kW	T, 200 yr	1.58 W/m ² /K	235
HLW GLASS STUDY									
HLW	Pour	0.61 m D x 2.70 m L	51 GWd/t	3.16	0	2 kW	T, 200 yr	No	100
HLW	Pour	0.61 m D x 2.70 m L	51 GWd/t	3.16	37	2 kW	T, 200 yr	No	115
HLW	Pour	0.61 m D x 4.50 m L	51 GWd/t	5.26	10	7 kW	T, 200 yr	No	355
HLW	Pour	0.61 m D x 4.50 m L	51 GWd/t	5.26	37	3.3 kW	T, 200 yr	No	162


WF	Package typ.e	WP Dimensions	Fuel burnup	MT HM	Age OoR,yr	Heat output	-Peak Salt T, C	Peak from Hardin et.al. 2011
WASTE PACKAGE SIZE and AGING STUDY: 40 and 60 GW-d/MT BURNUP (10 yr AGE OoR)								
UNF	4-PWR.	0.82 m O x 5.00 m 1	60 GWd/t	1.8	10	5.8 kW	145	139.9
UNF	12-PWR.	129 m O x 5.13 m 1	60 GWd/t	5.64	10	17.5 kW	410	-320
WASTE PACKAGE SIZE and AGING STUDY: 40 and 60 GW-d/MT BURNUP (50 yr AGE OoR)								
UNF	4-PWR.	129 m O x 5.13 m 1	60 GWd/t	1.8	50	2.6 kW	75	81.8
HLW GLASS STUDY								
HLW	Pour	0.61 m O x 4.50 m 1	51 GWd/t	5.26	10	7 kW	355	281.5
HLW	Pour	0.61 m O x 4.50 m 1	51 GWd/t	5.26	37	3.3 kW	162	281.5 at 10 yr 119.1 at 50 yr

<< FEM Results Summary (GSR without ventilation)

Semi-Analytical Approximation >>
(GSR without ventilation)

Model

$$T(t) = T_{amb} + \frac{Q(t)}{2\pi K_{buf}} \ln \left| \frac{r_2}{r_1} \right| + \frac{1}{4\pi K_{rock}} \int_0^t e^{\frac{-r_2^2 \rho C_p}{4K_{rock}(\tau-t)}} d\tau$$

Composite Variance

$$Var\{T(t)\} = \sum_{i=1}^n \left(\frac{\partial T}{\partial z_i} \right)^2 Var\{z_i\}$$

Analytical Partial

$$\frac{d}{dKrock} T(t) = \int_0^t \frac{\rho C_p \cdot (r_2)^2}{4 \cdot \pi \cdot Krock^2 \cdot (\tau - t)} \cdot Q(\tau) + \frac{\rho C_p \cdot (r_2)^2 \cdot e^{\frac{\rho C_p \cdot (r_2)^2}{4 \cdot Krock \cdot (\tau - t)}} \cdot Q(\tau)}{16 \cdot \pi \cdot Krock^3 \cdot (\tau - t)^2} d\tau$$

Contributions to Overall Variance of Temperature at the Waste Package Surface, from Parameters (K_{rock} , K_{buf} , ρC_p , and r_2/r_1) for the Crystalline Rock SNF Disposal Reference Case

For the case of crystalline host rock, 4-PWR waste packages (0.66 m diameter), 0.35 m buffer thickness, and SNF with 40 GW-d/MT burnup (10 yr out-of-reactor). For buffer thermal conductivity the average of dry and hydrated

values was used.

Used Refafence Open Mode Concept Specifics

Disnsitinn

U..... i...	Ilro.....r....f.....l C.....lirro.....f....ru	TDI a...-a
Media/Concept>>>	erumane.....rave	(alluvium)	TDI a...-a
Repository depth	-500m	200 to 300m	300 to 500 m
Hydrologic setting	Saturated	Unsaturated	Saturated
Ground support material	Rockbolts, wire cloth & shotcrete	Rockbolts, wire cloth & shotcrete	Rockbolts
Seals and plugs	Emplacement drift plugs and seals Shaft & ramp plugs and seals	Shaft & ramp plugs and seals	Shaft & ramp plugs and seals
Normalized Areal Loading (GWe-yr/acre)	1 to 10	1 to 10	1 to 10
SNF Emplacement Mode	Horizontal in-drift emplacement	Horizontal in-drift emplacement	Horizontal emplacement in alcoves
WP configuration	Up to 32 PWR	Up to 32 PWR	Up to 32 PWR
Overpack material	Steel ⁸	Corrosion resistant (e.g., outer layer of nickel based alloy)	Steel ⁸
Package dimensions	S2 m D x 5 m L	S2 m D x 5 m L (typ.)	S2 m D x 5 m L
Drift/borehole dia.	4 m (drifts)	4 m (drifts)	5 m W x 3m H (nominal; alcoves) 3.75 m dia. (nominal; ventilation)
Drift/borehole spacing	20 m (drifts) 10 m (packages)	20 m (drifts) 10 m (packages)	40 m (drifts); 20 m (alcoves) Result: packages on 20-meter grid; ventilation drifts centered between access drifts
Borehole liner material	NA	NA	NA
Buffer material	NA	NA	NA
Backfill material	No backfill	Crushed clay/shale with swelling clay added	Crushed salt
Line or point loading	Point	Point	Point

- First proposed in the 1957 NAS Report
- Championed by Winograd and others
- Used for Nuclear weapons testing for over 50 years
- Currently being used for disposal of transuranic waste at the Nevada Test Site (NTS) in the Greater Confinement Disposal Boreholes (GCDB)
 - Performance assessment completed for the GCDB
 - Extensive research on the hydrology and climate of NTS alluvium
 - Robust research on paleo-hydrology and paleo-climate of desert alluvium using environmental tracers in soil profiles

Alluvium – U1a Tunnel Complex

- Cheap construction
- Long lifetime
- 300 m Depth; Dry

■ Composition

- 20% gravel, 70% sand, 8.5% silt/clay, 2.5% cobbles
- Weathered source rock (e.g., silicic volcanic and carbonate)

■ Thermal Conductivity

- Lab measurement on re-compactated sediment 0.5 to 0.8 W/m-K
- From existing geothermal gradient – 1 to 1.2 W/m-K

■ Porosity

- 38 to 50%

■ Sat. Hydraulic Conductivity

- 5.5×10^{-5} to 0.5 m/s

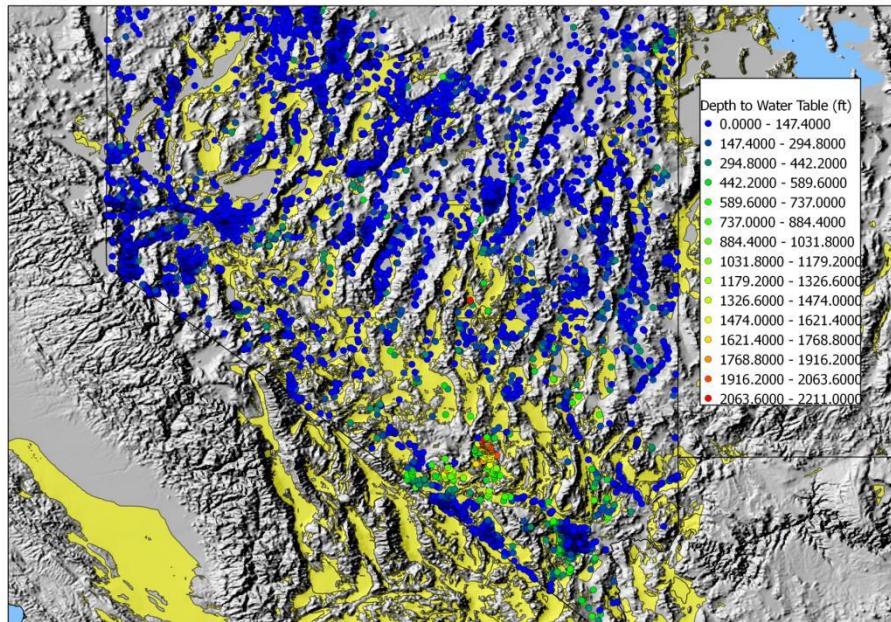
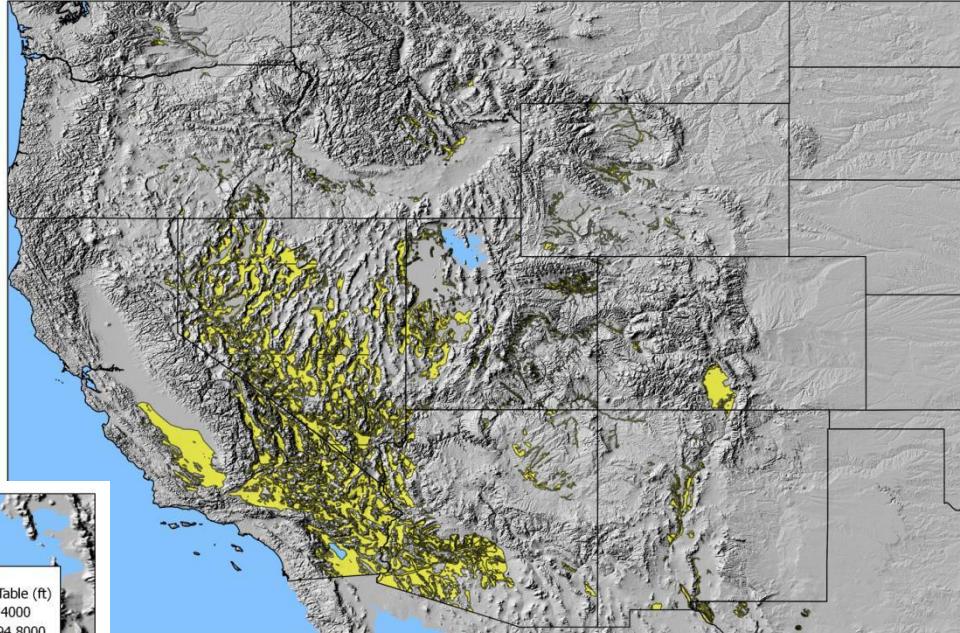
■ In situ Saturation

- 9 to 16%

■ Alluvium → very low moisture content and recharge

- In some locations and strata, zero recharge for the past 100 ka
- Low fluid velocities → long residence times (e.g., ~100 ka to water table)
- Even during sustained pluvial events, recharge rates are limited
- Nearly ideal porous medium
- Dilution at the water table

■ ^{36}Cl and Cl mass balance from a wide variety of arid sites in Texas, New Mexico and Nevada indicate no modern recharge (Phillips 1994)



- Long time scale and uniform hydrologic responses → confidence in paleohydrology/paleoclimate
- Engineered barriers in a Vadose zone transport time + aquifer transport time

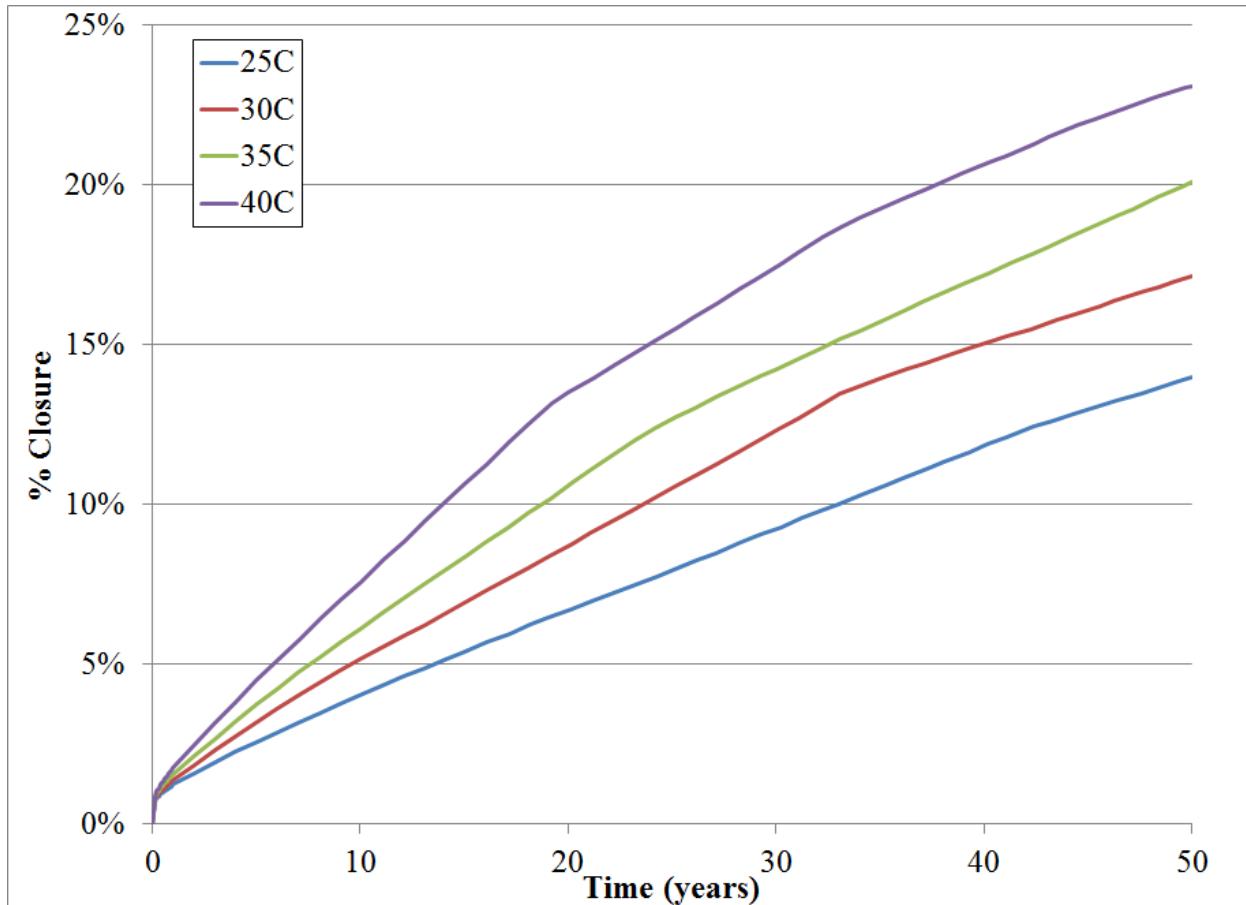
■ Retardation will only slow things down

- Large sorption capacity of alluvium (e.g., $R_{\text{Np}} = 108$, after Painter et al 2001)

- **^{36}Cl and Cl mass balance from a wide variety of arid sites in Texas, New Mexico and Nevada all indicate no modern recharge (Phillips 1994)**
 - Natural and bomb-pulse ^{36}Cl is in the upper 1 meter
 - Cl⁻ mass balance indicates ~13 ka of chloride accumulation in the upper meter
- **Deep vadose zones are still responding to climatic variations over the last 10 to 100 ka**
 - Very long equilibrium times for vadose zones over 50 m means they might never achieve equilibrium with climatic conditions at the top (Walvoord 2002)
- **Recharge depends on the vegetation type**
 - Pinion-juniper woodlands allow a small amount of recharge
 - Grasslands allow little or no recharge
 - Desert scrub allows zero recharge

Distribution of Arid Alluvium

**Depth to Water
(Southern Great Basin)**


4. Salt "Hybrid" Concept, cont.

FEM Results Summary: Effect from Forced Ventilation

Package Type	Fuel Burnup	MTIHM /WP	Age OoR (yr)	Heat Output	Ventilation	– Peak Salt Temperature (°C)
WASTE PACKAGE SIZE						
4-PWR	40 GWD MT	1.88	10	3.7 kW	No	100
4-PWR	60 GWD MT	1.88	10	5.8kW	No	145
12-PWR	40 GWD MT	5.64	10	11.2 kW	No	240
12-PWR	60GW D MT	5.64	10	17.5 kW	No	410
21-PWR	40GWD MT	9.87	10	19.7 kW	No	450
AGING STUDY						
4-PWR	60 GWD MT	1.88	50	2.6kW	No	75
12-PWR	40 GWD/MT	5.64	50	5.2 kW	No	115
12-PWR	60 GWD MT	5.64	20	14.0 kW	No	315
12-PWR	60GW D MT	5.64	50	7.8kW	No	170
21-PWR	40 GWD/MT	9.87	20	15.9 kW	No	345
21-PWR	40GWD MT	9.87	50	9.0kW	No	190
21-PWR	60 GWD/MT	9.87	50	13.6 kW	No	295
32-PWR	40 GWD/MT	15.04	50	13.7 kW	No	280
VENTILATION STUDY (Access Drift Ventilation)						
12-PWR	40GWD MT	5.64	10	11.2 kW	5 kg/s	205
12-PWR	60 GWD/MT	5.64	10	17.5 kW	5 kg/s	350
12-PWR	60GWD/MT	5.64	20	14.0 kW	5 kg/s	265
12-PWR	60GW D MT	5.64	50	7.8kW	5 kg/s	145
21-PWR	40GWD/MT	9.87	10	19.7 kW	50 kg/s	345
21-PWR	40 GWD/MT	9.87	10	19.7 kW	5 kg/s	360
21-PWR	40 GWD MT	9.87	20	15.9 kW	5 kg/s	280
21-PWR	40GWD/MT	9.87	50	9.0kW	5 kg/s	150
21-PWR	60 GWD MT	9.87	50	13.6 kW	5 kg/s	235

4. Salt “Hybrid” Disposal Concept, cont. Opening Stability with Pre-Closure Ventilation

- Numerical study with a circular (2-D) opening
- Multimechanism deformation creep model
- Uniformly heated salt
- Access drift closure rates as a function of wall temperature

