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Outline.

� Motivation.

� Summarize efforts to build soft x-ray user platforms for 

operando studies.

� Ambient pressure photoemission (APXPS)

� X-ray absorption (XANES)

� SOFC systems we have investigated.

� H2 oxidation and H2O reduction on a platinum electrode

� O2 reduction on a perovskite electrode
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Chemistry and charge transfer at interfaces 

drive many electrochemical technologies.

� What is largely unknown:

� The chemical state of the 

reactive surface

� The rate limiting processes

� Differences between surface 

and bulk

� Clear need to experiment 

under operating conditions.

� SOFC environment is hostile

� high temperature

� “high” pressure
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Ambient pressure XPS.

� Photon in — electron out (XPS).

� Measure kinetic energy of electrons at 

fixed photon energy

� Probe electronic states of atoms 

near surface.

� Identify surface species

� Resolve oxidation state

� Measure surface potential

� Differentially pumped analyzer

� BL 11.0.2 and BL 9.3.2

� operate at 10 Torr and 700 °C
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X-ray absorption (XANES).

� Photon in — electron out (EY, surface).

� Measure electron flux while scanning 

photon energy across absorption edge

� Photon in — photon out (FY, bulk).

� Measure fluorescent photon flux while 

scanning photon energy across absorption 

edge

� Probe electronic states of atoms near 

surface and in bulk.

� Identify species

� Resolve oxidation state

� Resolve coordination environment

� Assess ligand field effects
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One environment configuration.

� Surface states.

� Core level XPS

� VB photoemission

� XAS partial electron yield

� Local potential

� Macroscopic behavior.

� Impedance spectroscopy

� Potential steps/sweeps

� Reaction rates

� Electrolytic half-cell.

6J. A. Whaley et al., Rev. Sci. Instrum. 81, 086104 (2010).



Two-environment configuration.

� Surface states.

� Core level XPS

� VB photoemission

� XAS partial electron yield

� Local potential

� Bulk states.

� XAS fluorescent yield

� Macroscopic behavior.

� Impedance spectroscopy

� Potential steps/sweeps

� Reaction rates

� Galvanic full-cell.
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Suite of characterization tools available.
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H2 oxidation and H2O reduction at a 

platinum electrode.
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Patterned Pt films on YSZ crystal.

� Symmetric electrolytic cell.

� Evaporated Pt

� Shadow mask lithography

� Experimental conditions.

� 150 mTorr H2

� 150 mTorr H2O

� 550 – 750 °C

� ± 1.2 V (VWE-VCE)

� XPS peaks of interest.

� Pt 4f, Zr 3d taken at 490 eV

� O 1s taken at 750 eV
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Rigid energy shifts in photoelectrons 

reveal local surface potential.

� Spatially resolve surface 

potential in electrified cell.

� Non-contact

� Non-perturbing

� Measure interfacial 

overpotential for a metal 

electrode.

11El Gabaly et al., Phys. Chem. Chem. Phys., 12, 12138 (2010)
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Resolve local surface potential landscape.

� Each data point based on fitted XPS spectrum.

� Energy resolution = ± 10 meV

� Spatial resolution = ± 20 µm

� Tafel plot generated using XPS measured overpotentials (η).
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XPS reveals the identity of an electrochemical 

reaction intermediate specie.

� Locate OH on YSZ near triple 

phase boundary.

� Surface coverage changes 

with bias.

� [OHYSZ] decreases when water 

is reduced
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Allen-Hickling analysis of H2 oxidation based 

on XPS measured overpotentials.

� Overall hydrogen oxidation reaction:

� The linear fit gives a unique combination of parameters:

� Hydrogen oxidation in Pt/YSZ reaction mechanism:
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Charge-transfer mechanism of hydrogen 

electrochemical oxidation.

15El Gabaly, F. et al., Chem. Comm. 48, 8338 (2012)



O2 reduction on a perovskite 

electrode.

16



Custom chamber for SOFC studies.

� Fully functioning SOFC.

� T < 750 °C, P < 10 Torr

� Supports a Nernst potential
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Patterned ABO3 perovskite films on YSZ 

crystal.

� Galvanic cell.

� La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF)

� Ba0.5Sr0.5Co0.8Fe0.2O3- δ (BSCF)

� PLD microelectrodes

� Shadow mask lithography

� Experimental conditions.

� 1.0 Torr O2 (cathode)

� 1.0 Torr H2/H2O (anode)

� 650 °C
� 1.0 V Nernst potential

� XPS peaks of interest.

� Sr 3d, Ba 4d taken at 1005 

and 300 eV

� XANES edges of interest.

� O-K

� Fe-L3

� Co-L3
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Ba substitution dramatically increases 

ORR rate.

� Ionic radii differ by 30%.

� RBa(2+) > RLa(3+) expands the lattice

� Affects vacancy formation energy

� Charge difference affects B-site.

� (BaSr)2+(B’B)4+ vs. (LaSr)2.5+(B’B)3.5+

� Alters Co and Fe charge compensation 

mechanism
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XANES reveals differences in bulk behavior.

� Fe reduced in BSCF when Vö form electrochemically.

� Co reduced in LSCF when Vö form electrochemically.

� BSCF more strongly reduced at lower overpotentials.
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Theory needed for detailed understanding.

� TM likely in mixed ground states.

� 3dn + 3dn+1L0

� Correlate TM-O covalency to:

� Vacancy formation energy

� Vacancy concentration

� ORR activity

� Where do the electrons go?

� Localized to TM-Vö defect

� De-localized

� Disproportionate
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too simple?

M. Pavone, A. M. Ritzmann, E. A. Carter, Quantum-mechanics-based design principles for solid oxide fuel 

cell cathode materials, Energy Environ. Sci. 4, 4933 (2011)
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XPS reveals differences in surface composition.

� Surface Ba-rich in BSCF (stoichiometric = 50%).

� Surface Sr-rich in LSCF (stoichiometric = 40%).

� Perovskite phase no longer predominant at surface
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O 2p-(Fe,Co) 3d hole states diminished at surface.

� Surface composition dominated by 

oxides of Ba and Sr.

� O stoichiometry very different

� BO6 symmetry likely broken.

� May have high surface vacancy 

concentration.

� Is the ORR rate more dependent 

on bulk properties?
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Outlook and challenges.

� Operando soft x-ray spectroscopy can provide composition and electronic 

structure information on electrochemical systems pulled out of 

equilibrium by the applied potential.

� Reveal surface and bulk states

� Reveal reactive intermediates

� Map surface potential landscape

� APXPS is first and foremost a surface science experiment.

� Challenge to develop well-controlled model systems

� XANES requires quantum theory to interpret.

� Parameter-free multiple scattering based on electronic structure models

� Develop an atomistic understanding of electrochemical processes

� Access to soft x-rays is a huge bottleneck.
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There may come a day when we have 

unlimited access to tunable x-rays.
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Thank you.
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