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Outline.

= Motivation.

= Summarize efforts to build soft x-ray user platforms for
operando studies.
= Ambient pressure photoemission (APXPS)
= X-ray absorption (XANES)

= SOFC systems we have investigated.
= H, oxidation and H,O reduction on a platinum electrode

= O, reduction on a perovskite electrode




Chemistry and charge transfer at interfaces )
drive many electrochemical technologies.

Laboratories

= Whatis largely unknown:

» The chemical state of the
metal-air batteries electrolyzers reactive surface

thermochemical cells

= The rate limiting processes

photochemical cells fuel cells

= Differences between surface
and bulk

‘ = (Clear need to experiment
W under operating conditions.

= SOFC environment is hostile

2 = high temperature
= “high” pressure




Ambient pressure XPS. ALS

= Photon in — electron out (XPS).

= Measure kinetic energy of electrons at

Kinetic
Energy
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fixed photon energy

= Probe electronic states of atoms
near surface.

Binding

Ef

. . Energy
= |dentify surface species

3s

2p

= Resolve oxidation state

2s

= Measure surface potential !

= Differentially pumped analyzer
= BL11.0.2and BL9.3.2
= operate at 10 Torr and 700 °C

Po

1s
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X-ray absorption (XANES). ALS

= Photon in — electron out (EY, surface). e

Energy
= Measure electron flux while scanning

photon energy across absorption edge

= Photon in — photon out (FY, bulk).

= Measure fluorescent photon flux while Binding ,
5

. . Energy
scanning photon energy across absorption PP S
edge ® L2 2s

Ef

" Probe electronic states of atoms near ' ’ ’ ’
surface and in bulk.
= |dentify species
= Resolve oxidation state
= Resolve coordination environment
= Assess ligand field effects

MGW
(XAS)
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One environment configuration. ) e,

= Surface states.
= Core level XPS
= VB photoemission
= XAS partial electron yield
= Local potential

= Macroscopic behavior.
= |mpedance spectroscopy
= Potential steps/sweeps
= Reaction rates

(EIectrontic half-ceD/7

J. A. Whaley et al., Rev. Sci. Instrum. 81, 086104 (2010). 6




Two-environment configuration. ) .

= Surface states.
= Core level XPS
= VB photoemission
= XAS partial electron yield
= Local potential

= Bulk states.
= XAS fluorescent yield

= Macroscopic behavior.
" |mpedance spectroscopy
= Potential steps/sweeps

® Reaction rates

micro-probe contac : :
C:_{.M

. x-ray fluorescence detector

= Galvanic fuII—cell>/ (XAS)
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Suite of characterization tools available. ) i
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H, oxidation and H,O reduction at a
platinum electrode.
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Patterned Pt films on YSZ crystal. ) &,

= Symmetric electrolytic cell.
= Evaporated Pt
= Shadow mask lithography

= Experimental conditions.
= 150 mTorr H,
= 150 mTorr H,0
= 550-750°C
= +1.2V (Viye-Vee)

Pt/YSZ/Pt cell

to XPS
analyzer

= XPS peaks of interest.
= Pt 4f, Zr 3d taken at 490 eV
= (O 1staken at 750 eV




Rigid energy shifts in photoelectrons = i,
reveal local surface potential.
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= Spatially resolve surface
potential in electrified cell.
= Non-contact
= Non-perturbing YSZ electrolyte

Zr3d

CPS (AU)

= Measure interfacial
overpotential for a metal
electrode.

186 184 182
BE (eV)

1 =8, PO— 4., (PY))— (8. (YSD) - 4,,(YS2))

El Gabaly et al., Phys. Chem. Chem. Phys., 12, 12138 (2010) 11



Resolve local surface potential landscape. [@i.

Cell bias
® -50mV
@ -100mV
o  -150mV
o -200mV
@ -300mV
®
o
°
°
°

11 [

n P(CE)-YSZ

-400mVv
-600mV
800mV

-1000mV
-1200mVv

A(Kinetic energy) (eV)
T
[

L] ’ : ; : : :
.ﬂ.. : ' ] !
'o% EI_I ~40H 2 as PLR HOR posV | """ s T SR S
024 © ° > 00000%° ++ PtRWSR negV ' ?
* loooge " oueostooaonogec0asostoseetsosuesostegootosed = Al o R, TR SO W W
o .": A ."‘:\ "i%&zi“:t&« o o9 .l.... Sese: ’.‘.!"..._: E E: LA PILWSH pOSV
OD_I §o00000°5500000  TREY : eee PtL HOR negV

. = 9]
T T T T T T ~5.0
0 100 200 300 400 500
Distance (um)

' L | | ' L
—0.6 —0.4 —0.2 0.0 0.2 0.4 0.6
n/V

= Each data point based on fitted XPS spectrum.
= Energy resolution =+ 10 meV

= Spatial resolution =+ 20 um

= Tafel plot generated using XPS measured overpotentials (7).
12



XPS reveals the identity of an electrochemical s,
reaction intermediate specie.

= Locate OH on YSZ near triple
phase boundary.

= Surface coverage changes
with bias.

= [OH,,] decreases when water
is reduced




Allen-Hickling analysis of H, oxidation based )
Laboratories
on XPS measured overpotentials.
We find:
o810 () =logyolio) ~ @yt |a=(Zers )=
O\ ) 10 /2.303RT v
v=I
= Overall hydrogen oxidation reaction: iy " =5.6x10" A-cm”

H, +0* <> H,0+2¢"
= The linear fit gives a unique combination of parameters:
n=2,v=1%=1Lr=0

= Hydrogen oxidation in Pt/YSZ reaction mechanism:

1.- Charge-transfer reaction (1e-)
2.- Chemical reaction (no e°). This is the RDS. Occurs 1 time.
3.- Charge-transfer reaction (1e°)

El Gabaly, F. et al., Chem. Comm. 48, 8338 (2012) 14




Charge-transfer mechanism of hydrogen
electrochemical oxidation.
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H>easy = 2Hpy (1)

O(YSZ)Z_ = Owszy T epy (2)

Hpy + Owszy — OHysz) (3)

H. Hpy + OHyszy = HoOgvsz) + epr) (4)

s H>Oysz) = H1Oygas) (5)
ER)

El Gabaly, F. et al., Chem. Comm. 48, 8338 (2012) 15
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O, reduction on a perovskite
electrode.

16



Custom chamber for SOFC studies. ) S,

X-Y-Z stage || x-ray chamber

YSZ tube

= Fully functioning SOFC.
= T<750°C,P<10Torr
= Supports a Nernst potential

17




Patterned ABO, perovskite films on YSZ
crystal.
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= Galvanic cell.
" LageSr4CopgFey ;035 (LSCF)
" BaysSrpsCoggFe ;03 5 (BSCF)
= PLD microelectrodes

= XPS peaks of interest.
= Sr3d, Ba 4d taken at 1005

= Shadow mask lithography
= Experimental conditions.

and 300 eV
= 1.0Torr O, (cathode) . YANES ed - ,
o1 INnterest.
= 1.0 Torr H,/H,0 (anode) eages
= 650°C O-K
= 1.0V Nernst potential Fe-L,
= Co-Lg
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Ba substitution dramatically increases
ORR rate.

= |onic radii differ by 30%.
= Rg,(2+) >R ,(3+) expands the lattice 200
= Affects vacancy formation energy

300

100 -
. . E 0 -
= Charge difference affects B-site. a
= (BaSr)2*(B'B)* vs. (LaSr)>5*(B'B)35* ., o0 '
= Alters Co and Fe charge compensation 200} i
mechanism =T
100F " -
K4
Rateggcr >> Rate gcr o
1 0 100 200 300
_ 2~
502 +2e- >0 7' (Q cm?)
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XANES reveals differences in bulk behavior. =
BSCF LSCF

intensity (arb. units)
intensity (arb. units)

| J

525 530 775 780 785
photon energy (eV)

photon energy (eV)

" Fereduced in BSCF when Vo6 form electrochemically.
= Coreduced in LSCF when Vo form electrochemically.
= BSCF more strongly reduced at lower overpotentials.

20




Theory needed for detailed understanding. @&,
too simple?
= TM likely in mixed ground states. LSCF
= 3d"+3d"lL,
= Correlate TM-O covalency to:

= Vacancy formation energy

= Vacancy concentration
= ORR activity

= Where do the electrons go?
= Localized to TM-V0 defect

= De-localized
= Disproportionate

M. Pavone, A. M. Ritzmann, E. A. Carter, Quantum-mechanics-based design principles for solid oxide fuel
cell cathode materials, Energy Environ. Sci. 4,4933 (2011)

21




XPS reveals differences in surface composition.
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= Surface Ba-rich in BSCF (stoichiometric = 50%).

= Surface Sr-rich in LSCF (stoichiometric = 40%).
= Perovskite phase no longer predominant at surface
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O 2p-(Fe,Co) 3d hole states diminished at surface. rh) debes

= Surface composition dominated by
oxides of Ba and Sr. 0K

= O stoichiometry very different [~~~ A
)
= BO, symmetry likely broken. S /
T
=
72]
= May have high surface vacancy  § 1oV
. £ — 0.7V
concentration. BSCE H LSCF J — 04V
525 530 52 530
= |sthe ORR rate more dependent photon energy (eV)

on bulk properties?

23




Outlook and challenges. ) e,

= QOperando soft x-ray spectroscopy can provide composition and electronic
structure information on electrochemical systems pulled out of
equilibrium by the applied potential.

= Reveal surface and bulk states
= Reveal reactive intermediates
= Map surface potential landscape

=  APXPS is first and foremost a surface science experiment.
= Challenge to develop well-controlled model systems

= XANES requires quantum theory to interpret.
= Parameter-free multiple scattering based on electronic structure models
= Develop an atomistic understanding of electrochemical processes

= Access to soft x-rays is a huge bottleneck.

24



There may come a day when we have
unlimited access to tunable x-rays.
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Researchers Demonstrate 'Accelerator on a Chip’

Technology could spawn new generations of smaller, less expensive devices for science,
medicine

September 27, 2013
Menlo Park, Calif — In an advance that could dramatically shrink p

researchers used a laser to accelerate electrons at a rate 10 times
glazss chip =maller than a grain of rice.

The achievement was reported today in AMafure by a team including
SLAC Mational Accelerator Laboratory and Stanford University.

“We =till have a number of challenges before this technology becon

. 5 . . o e R o
substantially reduce the size and cost of future high-energy particlk Nanofabricated chips of fused silica just 3
miillimeters |5'|'§‘ were uzed fo sccelerste
electronz af & rate 10 fimesz higher than
accelerators and X-ray devices for security scanning, medical ther cenveniicnal parficle sceelersior fechnology.

(Brad Plummer/SLAC)

particles and forces,” =said Joel England, the SLAC physicist who le

sCience.”

25
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