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Polymer Gels ) s,

= Polymer gel — physically or chemically cross-linked network of polymers which is swollen
by a liquid

= Network structure formed by polymer chains that are physically (entanglements) or
chemically (covalent bonds) bound together

= Solis the fluid that dilutes or swells the polymer network
=  Can be asimple fluid (e.g. Newtonian small molecule solvent like water or acetone)

=  Can also be a complex fluid (e.g., entangled polymer solution)
=  Nature of the sol significantly contributes to and determines the overall material response
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Fluorosilicone Gel i)

=  Commercially available fluorosilicone polymer gel (adhesive)
=  Dow Corning DC4-8022 Fluorosilicone Gel

= Platinum catalyzed curing reaction
= Cured at 82 °C for 24 hours
=  @Gel sol fraction = 50%

=  Gel samples of varying hardness (equilibrium modulus) studied
"  High modulus (G, =910 Pa)
"  Medium modulus (G, = 350 Pa)
=  Low modulus (G, =80 Pa)




Experimental Techniques ) i,

Small Amplitude Oscillatory Rheology
= TAlInstruments AR-G2 rheometer

=  Gel sample is cured between parallel plates
with a diameter of 40 mm and a gap of 1 mm

=  Oscillatory rheology measured as gel cures as
well as on final cured gel

=  Small amplitude oscillatory rheology allows
the probing of the evolving structure of the
gel without significantly disturbing it

Probe Tack Adhesion Measurement
=  TAInstruments ARES G2 rheometer lF TF

= 1 mm thick layer of gel cured on an
aluminum plate

= 8 mm diameter probe is brought into - ———FProbe —
contact with the gel film at a specified

force for a specified amount of time

" Probe is then separated from the gel at a | —— < ! Fl" %
S Substrate

controlled rate while measuring the force
as a function of distance




Curing Rheology and Gel Point Determination ()=,
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= Inthe uncured gel (viscous liquid) the viscous 100 |

modulus (G”) is much greater than the elastic

modulus (G’) T 101
= Asthe elastic gel network forms, G’ increases )
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Gel Point Determination : Stress="5 Pa
= Gel point is the point at which a i o

percolated polymer network is first 100 | —10H:

formed i —32h:
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: 1 Gel Point—
modulus decreases
0.1 b
0.1 1 10 100 1000

Time (min)




Gel Rheology ) i,
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= Rheology is dominated by an elastic response =  G” exceeds G’ as viscous contributions from
from the cross-linked gel network the polymer sol become significant
" HighG' lowtand = G’ and G” are approximately equal (tan § = 1)
= High modulus gel shows greatest difference between . ) ] ]
G’ and G” (smallest tan 6) At the highest frequencies, the material

response of each gel becomes approximately

= G'isindependent of frequency i
equal regardless of equilibrium modulus

= Frequency independence used to determine the
equilibrium modulus (G,,)



Polymer Gel Adhesion ) s,

= Lightly cross-linked polymers can form adhesive bonds of measureable strength with various
surfaces

= Adhesion is highly influenced by the polymer viscoelasticity as well as surface interactions

= Adhesive effectiveness is determined by ability of the polymer to dissipate energy effectively
= Adhesive must be able to accommodate large deformations and dissipate large amounts of energy before fracture occurs

= Here we examine the effects of separation velocity and confinement on both the adhesive
properties and the debonding mechanisms observed




Adhesion Parameters of Interest
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= Force —distance (and associated stress — strain) curve provides several key properties
= Qverall shape of the stress — strain curve is also indicative of debonding mechanism



Debonding Mechanisms — Interfacial ) i,

Interfacial Failure

Stress (MPa)

Strain (€)

a. Cavities form via surface cavitation or expanding
of existing defects on probe surface

b. Cavities grow larger as the sample is strained
c. Cavities coalesce, decreasing surface contact with
probe

d. Upon complete debonding the adhesive film is
undamaged

Brown et al., Macromol. Mater. Eng. 2002, 287, 163-179




Debonding Mechanisms — Bulk )
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C. a. Stress build up in the adhesive layer exceeds the
threshold for cavitation and cavities form within the
bulk which relieves stress

b. Bulk cavities grow and interfacial cavities form

d (initial stages of interfacial failure)

c. Interfacial cavities coalesce, decreasing surface
contact with probe

d. Upon complete debonding the adhesive film is
undamaged, but bubbles remain in the bulk material
at the bulk cavitation sites

Brown et al., Macromol. Mater. Eng. 2002, 287, 163-179



Debonding Mechanism Changes with Confinement ()
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Confinement Effects i)
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Debonding and Separation Velocity )
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As the separation velocity increases, the dominant debonding mechanism shifts from interfacial
debonding to bulk cavitation

At intermediate separation velocities, a transition region is observed where both mechanisms are
manifest




Time Scale Effects i)

=  Work of adhesion depends strongly

1000
on the speed that the probe is -
separated from the polymer film ! % L .+ ]
= Atlow and moderate initial strain T .: s f
rates, a power law dependence is S 100 | s ¢
observed S . -
D su o
(V]
< %
e . b i ?
= At highinitial strain rates, the work of &
. .. e ey o
adhesion is independent of initial X 10 L | ¢
strain rate 2 g
=  Work of adhesion for all three gels I
converges to a similar value i Contact Force = 500 g
= Consistent with rheological observations at 1 L m(ﬁ?ntalctl T|me|= 100 Sec.
short time scales (high frequencies)
0.001 0.01 0.1 1 10 100 1000

. Short time scales do not allow the polymer
sol to relax so the contribution from
physical entanglements in the sol become
significant

Initial Strain Rate (1/s)



Peak Stress Also Depends on Time Scale ) G
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. Time scale of the deformation is slow enough o
that viscous contributions from polymer sol 5
can be neglected = 100
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exhibit the same peak stress values
_ p_ _ _ = Power law dependence of peak stress
= This convergence is consistent with the work L .
of adhesion and the rheology at short time on initial strain rate
scales = Power law region is characterized by a
= Allthree gels behave similarly at very short transition in debonding mechanism from
time scales interfacial failure to bulk cavitation



Another Look at Peak Stress i)

Low Initial Strain Rates

1000 .
=  Peak stress is independent of initial - Bulk Cavitation
strain rate I
=  Peak stress/Geol is constant for all gels 100
. In the regime where interfacial failure -

dominates, the peak stress generated is
proportional to the equilibrium modulus

= Peak adhesive stress in this regime is a
material property rather than a product of
the experiment

Interfacial Failure
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L Contact Force=500¢g
= Power law dependence of peak stress i Contact Time = 100 sec.
on initial strain rate 0.1 lriiimw el e i o o i
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=  Transition between debonding mechanisms . .
Initial Strain Rate/f,

High Initial Strain Rates o
Peak stress normalized by the equilibrium modulus (G,,)

= Peak stress is independent of initial
Initial Strain rate normalized by a characteristic

strain rate frequency (f,) determined from tan & curves for each gel

=  Peak stress values differ from one o
h K in bulk e - f, = frequency at which viscous effects become
another — peak stress in bulk cavitation significant

regime is NOT a material property



Strain to Failure

=  Failure strain is independent of initial strain rate for
high strain rates
= Bulk cavitation also the dominant debonding mechanism
. Similar to behavior observed in rheology and work of adhesion
= Power law dependence on initial strain rates at low
and intermediate rates

=  When the failure strain is multiplied by the
equilibrium modulus, the three curves collapse to a
single curve

=  Failure strain is an intrinsic material property for
these gels across all initial strain rates

= |Independence of strain rate observed at high rates

= These data suggest that, for a given initial strain
rate, each gel fails at a common stress stored in the
elastic network

Failure Strain
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Stress at Failure i)
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= Stress at failure shows the same qualitative dependence on initial strain rate as the product of the
equilibrium modulus and failure strain

= Power law dependence at low and intermediate rates followed by independence of rate at high
strain rates

= These dependencies are qualitatively similar to those observed in the rheology (tan 8) and work of
adhesion



Summary ) i,

= Adhesive properties and debonding mechanisms of fluorosilicone polymer gels
are sensitive to both the confinement of the gel and the separation velocity

Low Confinement or High Confinement or
Low Initial Strain Rate High Initial Strain Rate
Debonding mechanism is dominated by Debonding mechanism is dominated by
interfacial failure bulk cavitation
Work of adhesion, failure strain, and failure Work of adhesion, peak adhesive force,
stress show power law dependence on initial failure strain, and failure stress show
strain rate independence of initial strain rate

Intermediate Initial Strain Rate

Transition regime where debonding is influence by
BOTH interfacial failure and bulk cavitation

Transition in debonding mechanism is evident in the
dependence of work of adhesion, peak adhesive stress,
and failure strain

Also evident in the shape of the stress — strain curve



