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=  Why is a low cost micro sensor interesting to WR?
= Nylon degradation products.

= Down select of sensors

= Why Carbon based devices?

= Device and material development.

= Device electronic and fluidic package.
= Results

= Dijscussion and Future Work
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Degradation Products

= |f one can detect the signs of early aging ==) pathways can
be developed to minimize problems associated with material
degradation. (Material lifetime cycle)

= |deally, develop a real-time health and stability monitor using
lower power embedded evaluation using chemical sensors.

= Leveraging WR environment gas sampling studies and
materials degradation studies using GC/MS the Karnaugh
Map (Logic Table) can be developed and understood.

= Nylon 6,6 —adipic acid, 1,6 hexanediamine and pyridine
L. | 4
5 3
HDTKV\)LOH Mol ey, EOE
h

o
3



http://en.wikipedia.org/wiki/File:Adipic_acid.svg
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Down select of sensor options
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= (Quartz Crystals and Surface Acoustic Waveguides Vi
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= Temperature dependence on signal. Dt V. Roshehupkin and Ml Brune

= Crystalline material choice (direction) and operating frequency.

= Expensive electronics and challenging to scale.

= MEMS/ NEMS Resonators

= Temperature dependence.

= Multi-step MEMS processing becomes costly.
= Operating frequency drives design and electronics. =

= Chemiresistor based

= Coating dependent drives performance. Burkel, Polsky, Washburn, Wheeler 08’

= How about a carbon based Chemiresistor and increase interaction of
the surface area?

= Decrease Temperature dependence and use DC electronics to lower
cost. 4



Device and Material Development @&
= Pyrolytic Carbon

= Derived from photosensitive polymers (novalac and Epon(SU8)).
= @G. Whitesides, M. Madou, and R. McCreery
= Has electrochemical sensitivity towards Redox compounds.

= Demonstrated at Sandia to have broader capabilities. Polsky, Burkel,
Washburn, and Wheeler for 3-D engineered porous carbon.

= Carbon MEMS as structures and beams using Xenon Di-fluoride (XeF2)
silicon etch release techniques, the material has a much lower internal
stress compared to a metal of equivalent dimension.
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Material Development LUl

Comparing Raman results. HOPG ~1582 cm-1, Diamond ~ 1332 cm-1
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G peak - Defines how structured the carbon lattice is becoming more graphitic due to heat. Pyridine

D peak — Defines the number of graphitized layers present on the surface.
2D- Defines the sheet stacking of the graphitized layers (graphene and/or graphite)
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Surface Mechanism ) e,

= Oxygen bonding to the carbon surface will increase resistance
and lower conductivity.

= Nitrogen bonding to the carbon surface will in theory
decrease resistance and increase conductivity.
= N-type dopant to Carbon Nantubes, Graphene , and Amorphous

carbon.
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Device Development

= First attempt at free standing beams.
= Choose a Silicon oxide etch release technique.

— Photoresist
Si02

Silicon

Low yield on devices.
= 49% HF found porosity in the carbon and would etch away the full device.
= Critical bake steps in air helped maintain dimensions (lowered reflow issues).
= Adjusted the process flow on the pyrolysis step to before release.

=  80% of the starting material thickness is the final device thickness aftera 3
C/min ramp from room temperature to 1150C under a 95% Nitrogen and 5%
Hydrogen reducing atmosphere.

= Commonly start ~ 3.3 micron and finish with ~ 1.1 to 1.3 micron
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Device Development ) .

= Moved to a XeF2 silicon etch process (Pad:Device surface area ratio)
= Straight forward manufacturing, lends scaling on full wafer.

<<— Photoresist

Xenon Di-fluoride

<— Silicon

10 micron wide X 30 micron long

Design specific
Air craft Beams for testing

Wing X-section




Carbon MEMS Bridge ) 5.

= Developed aseries of 1, 5, and 10 micron wide bridge which
are 400 microns in length.

= 4-channels on a die (4mm X 8mm)
= Each has a resistance ~ 200 ohms

= Devices is tested in a parallel resistance layout (80-90 ohms)
using 3VDC.




Device interfacing using fixtures ).

PCB board

Viton O-ring at PCB/PEEK interface
Pogo Pins for electrical contact

Gas Inlet using Micro-tights (Sandia R. Renzi design)
And Mega-bore capillary tubing (~530 O.D.)
Using only 20-30 sccm Nitrogen or Air.



Initial concept for N-type dopant &

Single Bridge ( new device each test) used to test Pyrolytic Carbon Bridges
in the presence of Ammonia Hydroxide
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1,6 Hexanediamine wv_ -,

Hexanediamine headspace from a 5ml vessel and Carbon Bridge
Detector Response

90.00

—— Hexanediamine. ‘

88.00

- ~4%

86.00 r\//’/\\JA\/ \//\\// Delta R/ R
| N

L =

wl

76.00

(o]
N
o
o

Resistance (ohms)

0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

13




Sandia
m National
Laboratories

Nylon Degradation

Isotek Nylon (NEAT) aged for 25 days at 109C
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Tuning the sensor surface

= Did not see pyridine, adipic acid, and ammonia hydroxide.

= Considering additional surface chemistries to assist in enhancing this
binding event.

= Diazonium covalently linked to the surface.

= Graphene doping to improve conductivity and strength.
— Decrease pressure sensitivity.

= Not seeing NH,OH

Adding in a pre-concentration phase before the sensor to
help concentrate the gas stream.

Using a Micro-machined GC column along with an electronic
amplifier circuit will increase signal to noise.




Tuning using Graphene Nano-fillers @

= Reduced graphene oxide (RGO)
= Placed this into the photoresist and patterned the same devices.

= Using laser doppler viborometry (LDV) — a resonant frequency
analytical technique — material properties can be extracted.
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Electrochemical Society — PRIME ol i ; ;
ECS Transaction full paper % 0.5% RGO1Lgoading 2
Tunable Young’s Modulus in Carbon MEMS using Graphene-based 900 S/cm for 0 wt.% filler
Stiffeners 1800 S/cm for 2 wt.% filler

Cody Washburn*, Jill Blecke, Timothy N. Lambert, Danae Davis, Patrick
Finnegan, Brad Hance, and Jennifer Strong
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Discussion and Future Work ) e,

= Demonstrated releasable Carbon Bridge Devices.
= Still working sensor platform and N-type dopant activity.

= |nvestigate surface chemistries to help push the sensing
mechanism.

= Demonstrated tunable electro-mechanical properties.

= Recently shown graphene fillers with 5 and 10 wt.% loadings
are possible to resolve.
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