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Sodium-based Battery Development 
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Program Focus: Develop sodium-based battery chemistries for large 
scale energy storage

H. Zhu, S. Bhavaraju, and R. Kee. “Computational model of a sodium–copper-iodide rechargeable battery,” Electrochimica Acta (2013).

Na discharge  Na  e CuI2
  e discharge  Cu(s)2I 

• Sodium-air
• Sodium-ion
• Low temperature sodium-sulfur
• Sodium-bromine:  Na  +  ½ Br2  Na+ +  Br-

• Sodium-iodine:  Na  +  ½ I2  Na+ +  I-

• Sodium-copper iodide: Na + CuI2
-  Na+ +2I- + Cu(s) 
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• High ionic conductivity

• High electrical resistivity

• Robust stability in extreme 
chemical environments

• Facile, low cost synthesis 

The ceramic separator is central to Na-battery performance!

Ceramic requirements:

Na-Based Batteries Depend on 
Ceramic Solid State Electrolytes



NaSICON Ceramic Electrolytes
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Na1+xZr2P3-xSixO12 Na3Zr2PSi2O12

x = 2

What is NaSICON? (Sodium (Na) Super Ionic Conductor)

Key NaSICON attributes: 

• High ionic conductivity (up to 10-2 S/cm at RT)

• High electrical resistivity

• Robust stability in extreme chemical 
environments

• Facile, low cost synthesis

These qualities all depend on the materials 
chemistry of the ceramic!

?

?
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 Understanding the materials chemistry of the solid-state 
ion-conductor NaSICON

 Correlating material chemistry to materials properties (e.g., 
chemical stability, ionic conductivity, ceramic integrity)

 Designing improvements to NaSICON through processing 
and composition to optimize performance for Na-based 
batteries

Task Focus: NaSICON Ceramic Solid 
State Electrolytes



NaSICON Materials Chemistry
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Ahmad, et al. Sol. St. Ionics. (1987) 24: 89-
97. 
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NaSICON performance depends on phase chemistry!

Secondary phase formation can have a significant impact on:

• structural integrity • chemical stability• ionic conductivity



NaSICON Materials Chemistry
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Phase Dependence on Processing
Phase composition of NaSICON depends on processing

 Solid state processing of NaSICON ceramics typically involves 
an extended high temperature firing stage (>1200oC, >12 hours)
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R.S. Gordon, et al. Solid State Ionics. 3/4
(1981) 243-248.

“Decomposition” of NaSICON

High temperature processing leads to deleterious secondary phases!
Will a lower temperature process resolve phase impurity? 
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“Low” Temperature Sol-Gel NaSICON
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Solution 
reaction and 
precipitation
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Sol-Gel NaSICON Phase Evolution

10

X-ray diffraction shows 
the presence of 
Na3Zr2PSi2O12 (o) and

• Tetragonal ZrO2 (Z)

• Monoclinic ZrO2 ()

• Na3PO4 (Y) 

• Na2Si2O5 (X)

secondary phases. 
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Lessons from Low Temperature 
Processing

 Phase evolution during heating is complex!

 Lower processing temperatures result in significant secondary 
phase formation.

 Secondary phase are not formed just from high temperature 
processes, but can be residual from incomplete low 
temperature conversions.

 Higher temperatures appear to be needed for complete 
phase conversion, but high ToC is expected to lead to 
secondary phases. 
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What Next?



Excess Sodium Addition
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NaSICON with excess sodium fired at 1000oC shows dramatically cleaner 
phase chemistry! 
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Excess Sodium Addition
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NaSICON with excess sodium fired at 1000oC shows dramatically cleaner 
phase chemistry! 



Excess Sodium Reduces Effective 
Processing Temperature
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Thermal Analysis and XRD show NaSICON formation at lower temperatures 
with excess Na!

Excess sodium addition appears to change the energetics of NaSICON conversion, 
likely by affecting mass transport in liquid phase elements of sintering.
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Wrapping Up…

 NaSICON ceramics are promising solid state electrolytes for 
Na-based batteries. 

 Controlling secondary phase chemistry is critical to optimizing 
NaSICON performance.

 Reducing processing temperatures does not improve 
NaSICON phase purity.

 Addition of small amounts of excess sodium dramatically 
reduces secondary phase formation at lower temperatures!

22

What have we learned? 



Looking Forward

 Explore alternative mechanisms to 
reduce processing temperatures 
with high phase purity.

 Investigate alternative precursor 
pathways to control phase 
chemistry.

 Evaluate effects of phase chemistry 
on sodium ion 
transport/conductivity.

 Examine chemical stability of 
NaSICON as affected by additives 
(such as sodium).

23

Targeting synthesis of improved NaSICON stability to enable integration into next 
generation Na-based batteries:  
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Targeting synthesis of improved NaSICON stability to enable integration into next 
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