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Sodium-based Battery Development @
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Program Focus: Develop sodium-based battery chemistries for large

scale energy storage

« Sodium-air

« Sodium-ion

* Low temperature sodium-sulfur

+ Sodium-bromine: Na + 2 Br, €=> Na* + Br

« Sodium-iodine: Na + 2|, €= Na* + I

« Sodium-copper iodide: Na + Cul,” €=>» Na* +2|-+ Cu(s)

Na —schaige s Nog* + e

H. Zhu, S. Bhavaraju, and R. Kee. “Computational model of a sodium—copper-iodide rechargeable battery,” Electrochimica Acta (2013).
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Na-Based Batteries Depend on ) i,
Ceramic Solid State Electrolytes

The ceramic separator is central to Na-battery performance!
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Ceramic requirements:

« High ionic conductivity
« High electrical resistivity

* Robust stability in extreme
chemical environments

Current collector * Facile, low cost synthesis
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NaSICON Ceramic Electrolytes ) 5.

What is NaSICON? (Sodium (Na) Super lonic Conductor)

Nay ., ZrPs,Si0 ——3 NasZr,PSi,0,

Key NaSICON attributes:

« High ionic conductivity (up to 10-2 S/cm at RT)
» High electrical resistivity

* Robust stability in extreme chemical ?
environments

* Facile, low cost synthesis ?

These qualities all depend on the materials
chemistry of the ceramic!




Task Focus: NaSICON Ceramic Solid @@
State Electrolytes

» Understanding the materials chemistry of the solid-state
ion-conductor NaSICON

» Correlating material chemistry to materials properties (e.g.,
chemical stability, ionic conductivity, ceramic integrity)

= Designing improvements to NaSICON through processing
and composition to optimize performance for Na-based
batteries




NaSICON Materials Chemistry
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NaSICON performance depends on phase chemistry!

Secondary phase formation can have a significant impact on:

* Ionic conductivity

ZrO,

(monoclinic
and
tetragonal)

Glassy
inclusions

« Structural integrity * chemical stability
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NaSICON Materials Chemistry ).

NaSICON performance depends on phase chemistry!

Secondary phase formation can have a significant impact on:

* Ionic conductivity « Structural integrity * chemical stability
Sodium High solubility of sodium phosphates
phosphates 4003 in acid and base can lead to

g 3500 — mechanical failure!
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Phase Dependence on Processing LUl

Phase composition of NaSICON depends on processing

= Solid state processing of NaSICON ceramics typically involves
an extended high temperature firing stage (>1200°C, >12 hours)

“Decomposition” of NaSICON Loss of volatile species (e.g., Na and P)
ooy e i ponents. These mixtures were heated between 104

9 and 120°C where a glassy transparent matrix
formed due to the presence of the polyfunc-
tional acid. The mistures were then pyrolized to 102
their component osides by heating to 4KFC for % 1 O 5OOC
41 Residual carbon was removed by calcining o 100 - - - - _
the material at 9FC. The resulant "soft 2 M e e - -

NayPO, 250, . t, cakes” were then milled using dense a-alumina N

TSPl media leading to 2 mean partcle size of 2um. C_U 984 '
Noglr 0 Bar samples were uniaxially pressed and isos- cC o

tatically pressed. Sintering in air was performed = ~

Fig. | Tentative phase relations in the Nasicon-7e0: phise gt [emgxfmm he[weengm_i and ]3[I])(|°(’. X- _9 96 ~ - 1 1 OOOC

fiekd (from N-ray analyses of sintered specimens). ray examination of the calined powder n- — Se— oL
dicated that the material was basically non- O """"""""
crystaline. Two detectable phases were present: N 94 +
Nasicon and trace amounts of Zr0s The v=23 ©

Anather potentialy economical approach compositon had only a trace of Zr0 while the

[4] for the formation of Nasicon is the =20 composition had slightly more. 92

mechanical mixing, calcination (1150-1160°C), An evaluation of selected sintering conditions

milling and subsequent sintering of ZrSi0yand ~for the two compositions studied is given in 20 . : . : . : . : . : . : .

Na:PO, powder mixtures. Bar samoles of milled  table 1. The existence of single-hase Nasicon is 0 200 400 600 800 1000 1200 1400

R.S. Gordon, et al. Solid State lonics. 3/4 . .
(1981) 243-248, Hold Time (minutes)

High temperature processing leads to deleterious secondary phases!

Will a lower temperature process resolve phase impurity? o




“Low” Temperature Sol-Gel NaSICON @:.
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Sol-gel processing . .
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Sol-Gel NaSICON Phase Evolution )
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X-ray diffraction shows
the presence of
Na,;Zr,PSi,O,, (0) and

* Tetragonal ZrO, (2)

* Monoclinic ZrO, ()

* Na;PO, (Y)

* Na,Si,05 (X)
secondary phases.

Monoclinic ZrO,
appears to form from
conversion of
metastable tetragonal
Zr0O,.
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Sol-Gel NaSICON Phase Evolution )
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Sol-Gel NaSICON Phase Evolution )
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X-ray diffraction shows
the presence of
Na,;Zr,PSi,O,, (0) and
* Tetragonal ZrO, (2)
* Monoclinic ZrO, (°)
* Na;PO, (Y)
* Na,Si,05 (X)
secondary phases.

Monoclinic ZrO,
appears to form from
conversion of
metastable tetragonal
Zr0O,.




Sol-Gel NaSICON Phase Evolution )
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X-ray diffraction shows
the presence of
Na,;Zr,PSi,O,, (0) and
* Tetragonal ZrO, (2)
* Monoclinic ZrO, (°)
* Na;PO, (Y)
* Na,Si,05 (X)
secondary phases.

Monoclinic ZrO,
appears to form from
conversion of
metastable tetragonal
Zr0O,.
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X-ray diffraction shows
the presence of

* Tetragonal ZrO, (2)
* Monoclinic ZrO, (°)

- Na PO, (Y)
- Na,Si,0; (X)

Na,;Zr,PSi,O,, (0) and
secondary phases.

Monoclinic ZrO,

f

metastable tetragonal

Zr0O,.

appears to form from
conversion o

o
4

14

Sol-Gel NaSICON Phase Evolution
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Lessons from Low Temperature )
Processing

= Phase evolution during heating is complex!

= Lower processing temperatures result in significant secondary
phase formation.

= Secondary phase are not formed just from high temperature
processes, but can be residual from incomplete low
temperature conversions.

= Higher temperatures appear to be needed for complete
phase conversion, but high T°C is expected to lead to
secondary phases.

What Next?
T
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Excess Sodium Addition ) fies,

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner
phase chemistry!
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Excess Sodium Addition ) fies,

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner
phase chemistry!
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phase chemistry!
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NaSICON with excess sodium fired at 1000°C shows dramatically cleaner

Excess Sodium Add




Excess Sodium Reduces Effective
Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures
with excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion,
likely by affecting mass transport in liquid phase elements of sintering.




Excess Sodium Reduces Effective ) i,
Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures
with excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion,

likely by affecting mass transport in liquid phase elements of sintering.
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Excess Sodium Reduces Effective ) i,
Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures
with excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion,

likely by affecting mass transport in liquid phase elements of sintering.
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Wrapping Up... ) e,

What have we learned?

= NaSICON ceramics are promising solid state electrolytes for
Na-based batteries.

= Controlling secondary phase chemistry is critical to optimizing
NaSICON performance.

= Reducing processing temperatures does not improve
NaSICON phase purity.

= Addition of small amounts of excess sodium dramatically
reduces secondary phase formation at lower temperatures!

22




Looking Forward ) =,

Targeting synthesis of improved NaSICON stability to enable integration into next
generation Na-based batteries:

= Explore alternative mechanisms to . G i
reduce processing temperatures 1 |
with high phase purity. I e A

" |nvestigate alternative precursor ( 2 ,mca
pathways to control phase 1
chemistry. @ |\ el el

Separator (Na-conductor)

= Evaluate effects of phase chemistry
on sodium ion
transport/conductivity.

= Examine chemical stability of
NaSICON as affected by additives
(such as sodium).




Looking Forward ) =,

Targeting synthesis of improved NaSICON stability to enable integration into next
generation Na-based batteries:

= Explore alternative mechanisms to
reduce processing temperatures
with high phase purity.

= |nvestigate alternative precursor

pathways to control phase
chemistry.

= Evaluate effects of phase chemistry
on sodium ion
transport/conductivity.

= Examine chemical stability of
NaSICON as affected by additives
(such as sodium).
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Looking Forward
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Targeting synthesis of improved NaSICON stability to enable integration into next

generation Na-based batteries:

= Explore alternative mechanisms to
reduce processing temperatures
with high phase purity.

= |nvestigate alternative precursor

pathways to control phase
chemistry.

= Evaluate effects of phase chemistry
on sodium ion
transport/conductivity.

Examine chemical stability of
NaSICON as affected by additives
(such as sodium).
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