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Flow Battery Basics ) i

Laboratories

Energy storage technology utilizing redox states of
various species for charge/discharge purposes

Pump

* Potential for low cost

 Easy scalability

* Long cycle life

* Deep discharge
capability

* Energy (kWh) and
power (kW) scale

Membrane
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Early Development (Aqueous) ) i
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VO,* + 2H* + e- ==VO0?* + H,0
temperature sensitivity g

Fe3+ —
Fe2*

i

significant crossover

N
Nafion® membrane
requires electrocatalyst (crossover mitigated)
Open Circuit Potential (OCP) 1.2 V' Open Circuit Potential (OCP) 1.3 V?




Non-Aqueous Chemistry )

Solvent Electrochemical
Window/V

Water 1.3V
Dichloromethane 3.7V
Tetrahydrofuran 3.7V

Acetonitrile 40V
Dimethylformamide 4.3V

« Wider voltage window

« Higher charge cycle efficiency

« Decreased temperature sensitivity
* Increased cycle life
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State of the Art in Electrolytes

¥

V(acac), [Ru(bpy)s]2*
2.2V OCP 2.6V OCP

1 mol[ L 0.2 mol[IL!
29 WhiL1 7 Wh(L"
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Hidden Potential of Ligands ) e
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Current paradigm of metal-based electrolytes uses metal as “redox center

A

» Metal and Ligands can be isolated, electronically, with each
storing electrons separately, makes better use of the
entire mass of the electrolyte and stabilizes highly
reduced and oxidized species

« Key is to synthesize and test compounds with the feature of
redox-active ligands

Interaction Energy

lonicity
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Electrochemistry of V(mnt);* ) i
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*Sproules, S., et al., Inorg. Chem. 2010, 49, 5241 Potential vs. NHE




Scalable, High Yield Synthesis ) .

NC CN NR X

Vilcl;  + NaS: (SNa 25 INR/L[VY(mnt)s] ~50% yield

Davison, A., et al., J. Am. Chem. Soc. 1964 , 86 , 2799

N CN  NR4X >90% Vi
— ield after
vVel, + THFE —= Vo, e + >—< — M(m oy. '
Clg V'¥Clye 2THF NaS SNa [NR4J2[V™(mnt)s] recrystallization

Cappillino et al., Adv. Energy Mater. (2013), in press




Effects of lon-Pairing ) i,
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* [dentity of supporting electrolyte
cation affects electrochemistry

current

« Shift apparent in 3-/4- redox couple

-1.5 -1.0 -0.5 0.0 0.5 1.0
Potential vs. NHE




National

Effects of lon-Pairing ) e
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Solid State lon-Pairing ) i,

= Single-Crystal X-Ray Diffraction analysis shows that there is a significant

difference in the ion-pairing between the NR,* and V(mnt),> (6 nearest cations)

5.92A

Avg. N-V distance: 5.9 A, 6.4 A




Static Cell Testing of V(mnt),%

Static “H-Cell” testing of the V(mnt),*
shows stable and flat charge (1 mA)
characteristics, discharge (0.1 mA)
begins at ~1 V but drops over time

CV looks good, so gradual drop in
discharge voltage is most likely from
unoptimized H-Cell geometry and
membrane crossover

current
I

L
1 mM (1) in MeCN
100 mM [NBu,[PF ]
250 mV/s
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Coulombic and Faradaic Efficiencies ) s

= Coulombic Efficiency reaches ~90% after 15 cycles (membrane and cell
conditioning)

= Faradaic Efficiency drops quickly after the first few cycles (high internal
resistances, full discharge is not being reached)
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Half Cell Reactions (V(mnt),2 €= V(mnt),") ) e,
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Half Cell Reactions (V(mnt);2 €= V(mnt);>)
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Half Cell Reactions (V(mnt);* <> V(mnt);*) )
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Summary

* New strategy for NRFB electrolytes with
increased energy density

* lon-pairing effects > 200 mV shift in OCP

» Half reactions for [V(mnt)];™, 27/1- and 37/2
are reversible, efficient

« Some decomposition occurs in cycling 3/4
half reaction

 Focus now on cause of irreversibility and
elucidating other promising electrolytes
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