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Integrated 2D Plasmonic Detectors @
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Hydrodynamic Model ) .
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Finite Element Analysis (Full EM) [

Tailoring Terahertz Near-Field Enhancement via Two-Dimensional Plasmons The plasmonic resonant absorption in GaN double-channel high electron
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Plasmon Transmission Line Model @Es.
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Generalized Plasmonic TL Model ) &5,
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%V(x)i*(x) — %CID(x, 0)I*(x) & (w, d) Characteristic Impedance of

Microstrip Lines
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Above definitions are not unique, but accurately address physics:

1. Effective potential V(x) is continuous

. Power V(x)I*(x) is continuous

3. Discontinuity in real carrier density p(x) and real current I(x) is
consistent with edge charge accumulation at step-like boundary

N
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Stepped Plasmonic TL ) .
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Stepped Plasmonic TL ) ..
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1.0 Coupled plasmonic
08 crystal lattice unit cells:
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Gate Bias Cavity Tuning

max

1.0
0.8
0.6

0.4

0.2

02 04 06 08 1.0
n/n

Sandia
National
Laboratories

max

1.0
0.8
0.6
0.4

0.2

02 04 06 08 1.0

nln0




Finite Plasmonic Crystal

Quasi-Infinite Plasmonic
Crystal in Si MOSFET
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TL Model: 2, 4 & 8 Period Crystals ) 5.
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Evolution, Conclusions & Future

Sandia
rl1 National

Laboratories

R~50 V/IW
NEP ~ 100 nW/Hz?
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R > 100 kV/W
NEP < 50 pW/Hz2
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Resonant Self-mixing Response 1) ..
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Resonant Terahertz Response 1) ..
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