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Purpose of Work

• Stores that are carried externally on high 
performance aircraft are exposed to intense 
vibroacoustic excitation

• The best approach to quantify this environment is 
to perform flight tests using instrumented stores
– However, flight tests are costly and therefore one almost 

never has data from repeated flights
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Purpose of Work

• We needed to generate a Maximum Predicted 
Environment (MPE) having a 99% probability of 
occurrence and a 90% confidence (denoted as 
P99/90) using the data from 8 flights with 3-4 
widely assorted test conditions per flight
– A heterogeneous database does not lend itself to 

developing extreme statistical estimates of the MPE
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Definition of Approach

• This study will focus on the straight and level 
flight events associated with a single station on 
one type of aircraft

• The primary remaining source of variation is the wide 
range of flight conditions

• The solution was to create a model that could 
extrapolate the data for any given flight condition 
to any other flight condition
– The selected model was based on the fact that 

References [1,2] indicated that the rms vibration was 
linearly proportional to the dynamic pressure (Q)
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Definition of Approach

• If all of the data lay exactly on a linear curve 
relating Q and Grms then one could infer that 
there was no flight-to-flight variability

• Conversely, the differences between the raw data 
points and the linear Q curve are assumed to 
represent the flight-to-flight variability
– Measurement errors and small differences in aircraft 

configuration will introduce “phantom” variability
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Raw Data Ensemble

• Upwards of 25-30 straight and level flight events 
were available 
– The available data were ranked according to the dynamic 

pressure, Q

– Mach number was also tracked as a possible model 
parameter but no discernible pattern was observed

• The ensembles had some uncertainty
– The measurement locations were not always obvious 

– The upper cut-off frequency may have changed over time

• The ensembles were scrubbed and obvious 
outliers were removed
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Raw Data Ensemble
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ASDs with major outliers were completely removed from ensemble
ASDs with minor outliers only have the narrow band anomaly removed
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Scaling Model

• The decision was made to start with a simple first 
order model relating the rms G to the dynamic 
pressure, Q
– Used rms G instead of the ASDs because the scrubbed 

ensemble of ASDs have a similar spectral content 

– The y-intercept was set to zero (in reality it should have 
a small positive value due to engine noise)

GMN=mMNQ
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Scaling Model

• There appeared to be some dispersion that 
increased proportional to Q so the difference 
between the measured values of the rms G and 
the mean rms G was also fit with a first order 
linear model 

GDF=mDFQ

Where

mDF=(GMEAS-GMN)/Q
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Extrapolated Ensemble

• The extrapolated Grms values, GE, for the desired 
dynamic pressure, QE, were computed from the 
corresponding raw values, QR and GR

GE=GR+mMN(QE-QR)+mDF(QE-QR)
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Extrapolated Ensemble

• The raw ASDs were scaled to match the 
extrapolated Grms values
– If the process is working the variance in the ensemble 

should be reduced
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Maximum Predicted Environments

• The final step was to generate the MPE responses

• Based on guidelines in NASA 7005 [3] the 
extrapolated ASDs, SXX, were assumed to be 
lognormal distributed

– The mean is computed as 

– The response for a given probability and 
confidence is computed as

– Where k is defined in NASA 7005

SXXM=10(mean(log(S
XX

)))

SXXU=10(mean(log(S
XX

))+k*std(log(S
XX

)))
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Maximum Expected Environments
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Summary

• The extrapolation model presented in this study is 
considered to be a useful tool for developing 
statistically significant MPEs for a sparse data set

• In the future we intend to gather more test 
conditions spanning the possible range of flight 
conditions
– Special attention will be given to gathering data that can 

be used to determine if the Mach number should be 
included in the scaling model

• It might be appropriate to use a non parametric 
statistical model such as Karhunen-Loeve

• Consider performing the analysis using the ASDs 
rather than the rms G
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