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Motivation

* Quantify predictive uncertainty in inverse
parameter estimates

— Basis for probabilistic predictive modeling
— Computationally efficient and accurate
— Robust for strongly heterogeneous media

* Culebra dolomite as a motivating example

e Calibration-constraint null-space Monte Carlo
(NSMC) method to test and develop a practical
means of addressing predictive uncertainty

Faster, Cheaper and At Least As Good!



Heterogeneous Field Parameterization

* “Pilot Points” (similar to a kernel-based approach)

* Choose locations in the model domain and update
their properties to produce better fit to measured
heads (“calibration points”)

e Spread influence of each point to neighboring model
cells by using the spatial covariance function as a
weighting scheme



Highly parameterized model

* For a traditional application of inverse modeling, the rule
of thumb is that n << m

— For numerical stability in the solutions, the number of
parameters (n) had to be considerably less than the number of
observations (m)

* This constraint still holds if each parameter is completely
independent of all others

— Rarely is this the case and almost certainly not the case for
pilot points defining a spatially correlated T field
* Most applications of calibration by the Pilot Point method
have considerably more estimated parameters than
observed data
— Need to reduce the effective number of parameters through
regularization (e.g., supplementary information about

parameters, relations between parameters) and subspace
analysis (e.g., singular value decomposition)



Inverse Modeling

c=Xb
® = (c - Xb)!Q(c - Xb)
b = (X!QX)1XtQc.

Linear Model

Non-Linear Co ™ M(bo)

Model
c=c,+J(b-b,)
®=(c"-c,-J(b-b,))Q(c"-c,-J(b-b,))
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Apply singular value decomposition
(SVD) to Jacobian (the sensitivity
matrix) to identify linear combinations
of “sensitive” parameters — “super-
parameters”

— Truncated SVD by selecting
parameters whose eigenvalues are
smaller than a threshold value

Decrease dimensionality of parameter
estimation (factor of 3-10)

Retain low frequency heterogeneity,
but not small-scale heterogeneity



Null-Space Monte Carlo

C = Xb + £ Full accounting for all parameters in physical system
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c=USV, b+e

U and V each contain orthogonal
unit vectors covering the model
range and domain (parameter)
space

Separation of singular values into
> threshold and < threshold

Replace X with parameters that
significantly impact the
calibration on given available
information



NSMC Concept
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NSMC method can be used to compute many
different parameter fields which all calibrate
the model

Null space Monte Carlo generation of
Calibration-constraint random fields

From Young et al., 2009, Draft Report, Texas Water Development Board



Sampling Null Space

Unknown error between true and

b — b* — —(] — R)b + Gg estimated parameters

Use information in C(b) and C(¢) to define C(b-b*)

C(h—b")= —(1\ ~R)C()I - 1;3)T n ?C(g)G}T

Parameter error from Errors of estimates in solution space
calibration null space (V,) (V,) driven by measurement noise

(b* _ b* )’ — V VT (b* . b* Project stochastic parameter differences that
ST/ —"2"2 ST 7 have zero impact on calibration into null space

Moore, C. and Doherty, J., 2005. The role of the calibration process in reducing model predictive error, Water

Resources Research, Volume 41, No 5.
Tonkin M., and Doherty, J., 2009. Calibration-constrained Monte Carlo analysis of highly parameterized models using

subspace techniques, Water Resources Research, 45



Culebra Dolomite

e The Culebra Dolomite near the WIPP site (NM,USA)
=> predictive performance measure is advective

transport time to a prescribed boundary —_ | ="

e Observation data include two decades of steady-
state head measurements and pumping test results

= Sequential indicator simulation (SISIM)

generated the stochastic zones over the
domain (Hart et al., 2009)

- Both hard and soft data are used together

This produces a large number of equally likely

indicator fields, where high and low T may
exist in the central zone

(=

Zone

Halite Present

oY in both
: © M2M2andM3/H3

Intervals

. * o) dlle '.@fj" Low
Transmissivity
P 2 Zone
w Gypsum y
Region
N

~30 km

A

v




Three Property Fields

* Simultaneous estimation of three spatially
correlated property fields

Transmissivity

Anisotropy
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Locations in blue are fixed values and red are locations where parameters are adjusted. For
transmissivity, 2 fields (Zones 0 and 1) are estimated, then combined

1380 observations, = 1200 parameters
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Drawdown (m)

Drawdown (m)
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MSP Calibration Process

200 starting fields are calibrated to
1380 steady-state head and transient
drawdown observations

Computation time is several months

SNL-14 Pumping Response

(i) Drawdown at H-19BO. RMSE=0.712 m, R¥*R?=0.77
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(3) Drawdown at SNL-12. RMSE=0.357 m, R¥R2=0.90
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Modeled Freshwater Head (m AMSL)
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Approach 1: MSP

Conceptual model is stochastic — poorly known location and extent
of highly fractured zones. Leads to multiple, equally probable
starting points (seed fields for inversion). Calibrate each seed field.

Stochastic Inverse Modeling (~ Ramarao et al (1995, WRR))
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Approach 2: NSMC

= Shift the approach: Calibrate one seed field and then modify that
field to create probabilistic distribution of results

= Null-Space Monte Carlo Method (~ Tonkin & Doherty (2009, WRR))
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1-2 iterations



Ground Water Parameter Estimation

= Calibrated parameters (>1200 parameters in total)

transmissivity (T), horizontal hydraulic anisotropy,
storativity (S), and a section of recharge

= 200 multiple random seed fields are calibrated to
observed data, and then 100 best fields are
selected for travel-time analysis
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Travel Time and Obj. Function

Objective Function Selections

Travel Time Selections
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5 calibrated fields selected with each criterion

100 NSMC realizations shown for each calibrated field




Travel Time Distributions

Objective Function Selections Travel Time Selections
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Original MSP calibration results
100 NSMC realizations shown for each calibrated field




Mean field of 200 multiple seed fields can be used to

get a calibrated model for NSMC method
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Comparison of travel times for different methods
shows the effectiveness of the NSMC method
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T, has a similar distribution for both fields, but S.D. of
T, distribution is quite different

Mean Effective Transmissivity (Te) Standard Deviation of Effective Transmissivity (Te)
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Effective Transmissivity (T ) [Log,, m2fs]
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Semivariogram

Semivariogram
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Conclusions

s Can NSMC approach approximate ensemble predictions

obtained with MSP runs?

= Yes, but the calibration constraint will bias estimates and
predictions to values proximal to the initial calibration

= Given a set of previously run models, what is an

effective means of expanding the predictive ensemble?
= Select final ensemble from larger set of NSMC realizations
using calibration quality and non-uniform sampling from
NSMC realizations

s Without existing calibrations, can a mean-field
representation and/or initial forward runs serve

as an initial starting point?

= Yes, NSMC realizations provide good match to observations
and reasonable approximation of MSP predictive distribution



Questions



