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Motivation

• Quantify predictive uncertainty in inverse 
parameter estimates
– Basis for probabilistic predictive modeling

– Computationally efficient and accurate 

– Robust for strongly heterogeneous media

• Culebra dolomite as a motivating example

• Calibration-constraint null-space Monte Carlo 
(NSMC) method to test and develop a practical 
means of addressing predictive uncertainty

Faster, Cheaper and At Least As Good!
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Heterogeneous Field Parameterization

• “Pilot Points” (similar to a kernel-based approach)

• Choose locations in the model domain and update 
their properties to produce better fit to measured 
heads (“calibration points”)

• Spread influence of each point to neighboring model 
cells by using the spatial covariance function as a 
weighting scheme
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Highly parameterized model

• For a traditional application of inverse modeling, the rule 
of thumb is that n << m
– For numerical stability in the solutions, the number of 

parameters (n) had to be considerably less than the number of 
observations (m)

• This constraint still holds if each parameter is completely 
independent of all others
– Rarely is this the case and almost certainly not the case for 

pilot points defining a spatially correlated T field

• Most applications of calibration by the Pilot Point method 
have considerably more estimated parameters than 
observed data
– Need to reduce the effective number of parameters through 

regularization (e.g., supplementary information about 
parameters, relations between parameters) and subspace 
analysis (e.g., singular value decomposition) 



Inverse Modeling

 = (c - c0 - J(b - b0))tQ (c - c0 - J(b - b0))

 = (c - Xb)tQ(c - Xb)

b = (XtQX)-1XtQc.

c0 = M(b0)

c = c0 + J(b - b0)

u = (JtQJ)-1JtQ(c - c0)

Xbc 
Linear Model

Non-Linear 
Model



SVD-Assist

• Apply singular value decomposition 
(SVD) to Jacobian (the sensitivity 
matrix) to identify linear combinations 
of “sensitive” parameters – “super-
parameters” 

– Truncated SVD by selecting 
parameters whose eigenvalues are 
smaller than a threshold value
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c = c0 + J(b - b0)

u = (JtQJ)-1JtQ(c - c0)

• Decrease dimensionality of parameter 
estimation (factor of 3-10)

• Retain low frequency heterogeneity, 
but not small-scale heterogeneity



Null-Space Monte Carlo
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Full accounting for all parameters in physical system Xbc

Separation of singular values into 
> threshold and < threshold

 bVSUc T
111

Replace X with parameters that 
significantly impact the 
calibration on given available 
information

U and V each contain orthogonal 
unit vectors covering the model 
range and domain (parameter) 
space



NSMC Concept

From Young et al., 2009, Draft Report, Texas Water Development Board 

Null space Monte Carlo generation of 
Calibration-constraint random fields

NSMC method can be used to compute many 
different parameter fields which all calibrate 
the model

*
=

+

Null space



Sampling Null Space

GbRIbb  )(* Unknown error between true and 
estimated parameters

TT GGCRIbCRIbbC )())(()()( * 

Use information in C(b) and C() to define C(b-b*)

Parameter error from 
calibration null space (V2)

Errors of estimates in solution space 
(V1) driven by measurement noise

Moore, C. and Doherty, J., 2005.  The role of the calibration process in reducing model predictive error, Water 
Resources Research, Volume 41, No 5.
Tonkin M., and Doherty, J., 2009.  Calibration-constrained Monte Carlo analysis of highly parameterized models using 
subspace techniques, Water Resources Research, 45

)()( **
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ST

T
ST bbVVbb  Project stochastic parameter differences that 

have zero impact on calibration into null space 
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 The Culebra Dolomite near the WIPP site (NM,USA)   
=> predictive performance measure is advective

transport time to a prescribed boundary
 Observation data include two decades of steady-

state head measurements and pumping test results

 Sequential indicator simulation (SISIM) 
generated the stochastic zones over the 
domain (Hart et al., 2009)

- Both hard and soft data are used together

 This produces a large number of equally likely 
indicator fields, where high and low T may 
exist in the central zone

~ 30 km

Culebra Dolomite



Three Property Fields

• Simultaneous estimation of three spatially 
correlated property fields

Transmissivity Anisotropy Storativity

Locations in blue are fixed values and red are locations where parameters are adjusted.  For 
transmissivity, 2 fields (Zones 0 and 1) are estimated, then combined

1380 observations, ≈ 1200 parameters 11



MSP Calibration Process
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200 starting fields are calibrated to 
1380 steady-state head and transient 
drawdown observations 

Computation time is several months



Approach 1: MSP

 Stochastic Inverse Modeling (~ Ramarao et al (1995, WRR))

  

Random 
seed fields

Calibrate model(s)
to observed data





Prediction
with calibrated
fields

P
ro

b
a

b
ili

ty

Prediction

Observed

Predicted

EXPENSIVE!!!!

 Conceptual model is stochastic – poorly known location and extent 
of highly fractured zones.  Leads to multiple, equally probable 
starting points (seed fields for inversion).  Calibrate each seed field.

Up to 50 iterations

Advective Travel Times



Approach 2: NSMC

 Null-Space Monte Carlo Method (~ Tonkin & Doherty (2009,WRR))

Single field

Calibrate



Prediction
(may involve
1-2 iterations
for inverse
modeling)  

Calibration-constrained
random fields

P
ro

b
a

b
ili

ty

Prediction

Observed

Predicted

Not so expensive:
1-2 iterations

 Shift the approach:  Calibrate one seed field and then modify that 
field to create probabilistic distribution of results

Advective Travel Times



Ground Water Parameter Estimation
 Calibrated parameters (>1200 parameters in total)

transmissivity (T), horizontal hydraulic anisotropy, 
storativity (S), and a section of recharge

 200 multiple random seed fields are calibrated to 
observed data, and then 100 best fields are 
selected for travel-time analysis

  Pilot points

(Un)calibrated -
based five fields

(Un)calibrated travel
time-based five fields

Mean field of 200 
random seed fields

Best/fastest Worst/slowest25th

Percentile in 200 multiple fields

50th 75th

NSMC Analysis (5 groups -21 fields)

NSMC generation
of 200 random 
fields from each 
calibrated field



Travel Time and Obj. Function
Objective Function Selections Travel Time Selections

5 calibrated fields selected with each criterion
100 NSMC realizations shown for each calibrated field



Travel Time Distributions
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Mean field of 200 multiple seed fields can be used to 
get a calibrated model for NSMC method

Stochastic Inverse Method NSMC method with mean field

Measured steady head (m)
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NSMC: Calibrated travel time NSMC: Mean Field

Comparison of travel times for different methods 
shows the effectiveness of the NSMC method

Effect of high T channel

~ 20x speed up

~ 80x speed up

40 RFs
from each
calibrated
model

100 
Selected
fields



Te has a similar distribution for both fields, but S.D. of 
Te distribution is quite different

100 selected
Fields MSP
(Multiple 
Starting 
Point)

100 selected
Fields
(NSMC
method with
the mean field)



Te distribution along three transects
capture calibrated Te trends

Calibrated model with mean field
NSMC 100 selected fields



Variograms

MSP

NSMC (calibrated phi values) NSMC (uncalibrated phi values)

Variograms of 100 selected MSP Fields
follow the original variogram model 
well with a small variation 

For all NSMC sampling method, 
variograms of selected fields have 
more variations



Conclusions
 Can NSMC approach approximate ensemble predictions 

obtained with MSP runs? 
 Yes, but the calibration constraint will bias estimates and 

predictions to values proximal to the initial calibration

 Given a set of previously run models, what is an 
effective means of expanding the predictive ensemble?
 Select final ensemble from larger set of NSMC realizations 

using calibration quality and non-uniform sampling from 
NSMC realizations 

 Without existing calibrations, can a mean-field 
representation and/or initial forward runs serve 
as an initial starting point?
 Yes, NSMC realizations provide good match to observations 

and reasonable approximation of MSP predictive distribution



Questions


