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" FEAST Team
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= Tammy Kolda (Sandia — CA)

= Numerical algorithms, scientific computing
= Ali Pinar (Sandia — CA)

= Combinatorial scientific computing
= Cindy Phillips (Sandia — NM)

= Discrete mathematics

= Jaideep Srivastava (UMN)
=  Social network analysis

= Karthik Subbian (UMN grad student)
=  Social network analysis

Not here today...
= Jon Berry (Sandia — NM)
=  Graph algorithms
= Todd Plantenga (Sandia — CA)
= MapReduce for graph algorithms
= C.“Sesh” Seshadhri (Sandia — CA)
= Theoretical computer science
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FEAST Driving Principles

MINNESOTA

Obijective: Measure, reproduce, and exploit quantifiable characteristics
of real-world social network and computer traffic graphs

® Hour 1
@

1. Graph Assays: Sampling-based techniques to "o
compute frequency of common patterns in
large-scale graphs

= Ex: Estimate number of each type of directed
triangle

. R
2. Generative Models: Reproduce
characteristics shown in the assays Clustering Coeffcient
%0

O ca-AstroPh
* BTER
+ CL

= Ex: Reproduce clustering coefficient per degree
(i.e., triangle behavior)

3. Efficient Algorithms: Take advantage of
structure of social networks

Avg. Clustering Coefficient

= Ex: Triangle enumeration is provably linear for 0
power law graphs with exponent < 7/3 Degree
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GENERATIVE MODELS
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Why Model Networks? —

MINNESOTA

= Insightinto...
= Generative processes and principles

= Properties such as eigenvalue
distribution, diameter, etc.

= Changes over time

= Enable sharing of realistic but
non-sensitive data

=  Computer network traffic

= Social networks
= Statistics on graphs

= Drive sampling strategies

* |nform anomaly detection

= Determine nodes/edge properties
= Test graph algorithms

= Various scales

= Various degree distributions
= Future versions of today’s networks

7/18/2012 Kolda - FEAST - DARPA GRAPHS Kickoff



Desiderata for Undirected Graphs pmo.

Reproduce a variety of heavy tailed degree
distributions

= Power law, Pareto-lognormal, etc.

= (Can also consider joint degree distribution —
Reproduce global and degree-wise clustering —

coefficients

= Global clustering coefficient: C = probability that a
random “wedge” is closed (to form a triangle)

= Degree-wise clustering coefficient: C, = probability that
a random “wedge” centered at a node of degree d is
closed

= Consider also the 3-way degree distribution of triangles

Scalable
= Fast generation, i.e., O(m log n)
"= |ndependent edge generation, i.e., no history
= 2% nodes and 2%¢ edges for Graph 500

7/18/2012 Kolda - FEAST - DARPA GRAPHS Kickoff
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Most existing models
fail here — cannot
reproduce observed
degree distribution.

Challenging to have
both high clustering
coefficients and
scalability!




' Stochastic Kronecker Graphs (SKG) is (rh) i

Laboratories

the leader in scalable generators

MINNESOTA

=  Generator for GRAPH500 Benchmark

Graph 500 Parameters:
= Parallel edge generation GR

T =[0.57, 0.19, 0.19, 0.05]
L {26, 29, 32, 26, 39, 42}

= Only requires 5 parameters M=16 -2
=  SKG Inputs
= | =#of levels > number of nodesis N = 2t
. . To . Nodes—
= T=2x2generator matrix (entries sumto 1) From L -
= M= #edges 2(1 b
= Notes S
= Some edges may be duplicates or self-links and are ] e EEEE
|gn?red - ' Nodes c i d
= Fitting to real data using “KronFit” takes between 7 |
minutes for 20K nodes to 4 hours for 500K nodes
= References
" R'MAT: Chakrabart| ) Zhan, & FaloutSOS, SDMO4 SKG Edge Insert Procedure:
= SKG: Leskovec et al., JMLR, 2010 » Choose a quadrant of the adjacency

matrix proportional to entries of T
* Repeat for a total of L times to land
at a single entry of the matrix

3 issues with SKG...

7/18/2012 Kolda - FEAST - DARPA GRAPHS Kickoff



Issue #1: SKG degree distribution is () tra

Laboratories

not realistic (oscillations)

MINNESOTA

Seshadhri, Pinar & Kolda, arXiv:1102.5046, 2011; short version in ICDM11

Fixing the degree distribution  Naive addition of noise fails

= Thm: SKG degree distribution oscillates = Naive: “To smooth out fluctuations in the
b | | and 21 tail degree distributions, we add some noise to
etween lognormal and exponential tal the (a, b, c, d) values at each stage of the

=  Fix: Choose fixed random noise value ; recursion and then renormalize (so that

for each of the L levels a+bictd = 1) B C_ZFO4
=  Compare naive noise (blue) to our method

a — 2u;a b+ 1 (red) for Graph500 with L=26

T, = a+d
? b+, d— 2d
l"l"l, a+d . .. .
Our Fix (red) versus Naive Noise (blue);
Theoretical Prediction of Deg. Dist. Our Proposed Noisy SKG Hadoop implementation
4 . . ‘ SKG 10000000 &
10 SKG | ", . Noisy SKG (0.05) . * Noise per edge b=0.1
Thm. 1 ', ; 1000000 %
Lem 3 . Nosiy SKG (0.10) PT——
3
> 10 ¢ a2 100000
c c 10
g g
o o 10000
= 2 o
w 10 ¢ w
c>n g} 1000
< T .
1 10 ..
10t Graph500 1 Graph500 3 s .3t .
L= 16 1 L=16 T+ ;=R L
100 0 ‘1 2 '13 0 11 I2 3 4
5 § L * o AT A &
10 10 10 10 10 10 10 10 10 1 10 100 1000 10000 100000 1000000
Out Degree Out Degree
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- Issue #2: SKG isolated vertices () o

Laboratories

Issue #3: No community structure

MINNESOTA

Seshadhri, Pinar & Kolda, arXiv:1102.5046, 2011; short version in ICDM11

= |ssue #2: SKG may have man L Isolated Avg.
y y Nodes Degree Graph 500
Parameters:
26 32

isolated vertices

51% T =[0.57, 0.19,
L/2 7 29 57% 37 0.19, g-oglL
J = —NTT 32 62% 41 © M=16-
S (Lay,) o0l
r=—L/2 36 67% 49
r=(a+b)/(1-(a+b) e —
42 74% 62

. Degree Distribution Clustering Coefficient
10 " : 0.45 : :

* cit-HepPh * cit-HepPh
O SKG 04 * % O SKG |

A= %[4@ +0)(1 = (a+b)2

= Issue #3: Low clustering R
coefficients "

1 Note SKG @

= Noise addition (per Issue #1) N
doesn’t fix these issues o
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.Cépturing Degree Distribution: @ﬁ:ﬁﬂ‘;’m

Laboratories

Chung-Lu Model

MINNESOTA

Aiello, Chung, Lu, Exp. Maths. 2001; Chung & Lu, PNAS, 2002 and Annals. Combinatorics, 2002.

Degree Distribution

* cit-HepPh
O CL

= Premise: Probability of edge is
proportional to degrees of endpoints
= Pr(edge;) = dd;/ 2M (M edges)

= Scalable version: Independently pick
end points of each edge proportional
to degree
= Requires only O(n) information

= Need to be careful in implementation to
avoid excessive isolates and/or duplicates Clustering Coefficient

‘ T % cit-HepPh
= Only works if dd; < 2M, A

but we think it can be fixed

= Suggested alternative to SKG
=  Pinar, Seshadhri, Kolda, SDM12

= (Closely matches real data when
clustering coefficient is not an issue

7/18/2012 Kolda - FEAST - DARPA GRAPHS Kickoff
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Matching the Clustering Coefficients pry e
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Seshadhri, Kolda & Pinar, Phys. Rev. E, 2012

CL model has no mechanism to close wedges
= Therefore does not get high clustering coefficients

= Models that achieve high clustering coefficients require
history to guide future edge insertions

How to get high clustering coefficient without history?

= Random pairings cannot close wedges!

=  Must pre-group the nodes into affinity blocks c1 =1
= Qur theory: CL graph with high clustering coefficient must co = 1
have dense ER block at its core g =1
= Each affinity block is a near-clique
Cqp — 0.1

Simplifying assumption: Non-overlapping blocks

If nodes of different degrees
are in the same block, then
the high-degree nodes will

= Can tune clustering coefficient to be appropriate for the have low clustering
degree by changing connectivity of the block coefficients.

= |mplies blocks must comprise nodes of equal
(or near-equal) degree




£ @ Noftorel
BTER: Block Two-Level ER -

MINNESOTA

= Phase 1 S Adjacency Matrix

= Create near cliques via ER
with a high probability such
that phase 1 degrees do not -
exceed desired degrees

Phase 1 Degree
Desired Degree
8
& 10’
[
o
1 00 1 Adjacency Matrix - Lower Right Comer
2000 4000 6000 8000 10000
Vertex
= Phase 2

= Fill in the remainder of the
degree distribution using
a CL approach
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BTER: Block Two-Level Erdos-Rényi
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e

@

Preprocessing:
Create explicit
affinity blocks of
nodes with same
(or nearly same)

degree. The blocks

are determined by

the degree
distribution.

(-\@ Q
Q

Phase 1:
Erdés-Reényi graphs in
each block. Connectivity
based on observed C,
determines number of
links within each block.
Formula depends on
lowest-degree node in
block.

Phase 2:

CL (aka weighted ER)
model on “excess”
degree, creates
connections across
blocks. Can runin
tandem to Phase 1 by
worked with expected
excess degree.

7/18/2012
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Preprocessing: Determining Blocks
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Input: Desired degree-distribution
= Assume nodes sorted by degree, least to greatest
= |gnore degree-1 vertices in this phase
Algorithm:

= Group nodes in order

homogeneous

\

Output: Compressed information about
blocks

= Sjze of each block

= Bulk assign, if possible

= Starting index of each block

= “Weight” of each block (depends on connectivity)

= O(d
Observe: If degree distribution is power law,
then so is the distribution of the block sizes

= Evocative of Dunbar’s number:
Max block size = 100 for y=2

uniq) information, if compressed

heterogeneoum

s

~

s

~

r

7

N\

7/18/2012
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Scalable BTER: Independent Edges
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Choose phase 1 or 2?

Choose block Create Phase 2 edge
proportional to number using CL model on
of “samples” per block “‘excess degree”

Create Block 1 edge Create Block K edge - -
N per ER model with < .. per ER model with fs?se ;ngse

Chf?se Ch;nodse Choose Choose Requires O(n) data to determine

S 13( 2nd - gy

endpoint endpoint endpoint endpoint thg various p;(;l;gtzgltleséand c):an
e compre ~ uni):
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BTER versus CL and Forest Fire (FF)

™)
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soc-Epinionsl (sym): 76K nodes, 405K edges (downloaded from SNAP)

Degree Distribution

10° ;
é ¢ soc-Epinions1 ;
| * BTER _
10% & FF &
*@ & + CL g
G 5% 3
10°% o0 S
E g 2
S Py 5
107t £ @
%\ o
1 g@ 2
10 i <
O
10° - (g-*'f»
10° 10° ~ 10t
Degree

o
~J

© © © o o o
LN

-0

o0 D

- N W

Clustering Coefficient

¢ soc-Epinions1
* BTER
FF

+ CL

® ~
LS
Ky
+ e e
0 10° - 10t
Degree

BTER: Seshardhri, Kolda, Pinar, PRE 2012

CL: Chung & Lu, PNAS 2002

FF: Leskovec, Kleinberg, Faloutsos, KDD 2005
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BTER versus CL and Forest Fire (FF)

MINNESOTA

amazon0312 (sym): 400K nodes, 2.3M edges (downloaded from SNAP)

. Degree Distribution 08 Clustering Coefficient
10 | { amazon0312 | ¢ amazon0312
* BTER 0.7p * * BTER
~ FF g FF
o 98 5 o
O %, 305F 7 By
Ve O oA
E v$ 2 \}‘.A:
3 % g 04 v ok
3 & O £
102_ @* Q_:) ’ %
& - $
A < %
0.1t Ha,
% 0 Vv"-
10° - $ *@% A 0 e T I
10° 102 10* 10° 10 10°
Degree Degree

BTER: Seshardhri, Kolda, Pinar, PRE 2012
CL: Chung & Lu, PNAS 2002
FF: Leskovec, Kleinberg, Faloutsos, KDD 2005
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" BTER versus CL and Forest Fire (FF)

MINNESOTA
cit-HepPh (sym): 400K nodes, 2.3M edges (downloaded from SNAP)
) Degree Distribution 08 Clustering Coefficient
0 | O cit-HepPh | o gtT'E';pPh
0.7} *
¢ gfobog, *oIER £ FF
107 % % + CL G 06/ - CL
(S =
%; 3 0.5¢
g 10° ¢ g 0.4t
o g
N % $0.3
¢ 0
10"} % go.z-
® 0.1t
. 0
10° - &%
10° 107 10* 10

Degree

BTER: Seshardhri, Kolda, Pinar, PRE 2012
CL: Chung & Lu, PNAS 2002
FF: Leskovec, Kleinberg, Faloutsos, KDD 2005
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BTER versus CL and Forest Fire (FF)

MINNESOTA

wiki-Talk (sym): 2.3M nodes, 4.7M edges (downloaded from SNAP)

. Degree Distribution 07 Clustering Coefficient
" O wiki-Talk | O wiki-Talk
* BTER 0.6} * BTER
FF E FF
10°t + CL g 0.5} + CL
@
o
© 0.4}
o
=
2 0.3
[72]
=
©o02)
o
Z
0.1
0
10

Degree

BTER: Seshardhri, Kolda, Pinar, PRE 2012
CL: Chung & Lu, PNAS 2002
FF: Leskovec, Kleinberg, Faloutsos, KDD 2005
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Generative Models

MINNESOTA
= BTER Model 0s
. . ¢ cit-HepPh
= Model based on theoretical observation 0.7 * BTER
= High clustering coefficient in a CL (random) graph  § FF
is only possible if there is an ER subgraph < 08 +CL
= Affinity blocks = ER subgraphs. 505
= Matches degree distribution and clustering 20.4l
coefficient g 0sl
= Superior to CL, SKG (aka RMAT), and FF S
= Hadoop MapReduce and C++/MPI g02
implementation in progress 0.1
= Will propose as replacement for RMAT/SKG in

o

Graph 500 10
= Even BTER model...

= Current version is only for undirected simple
graphs

= Plan to add edge direction, attributes, and
evolution

= Goalis that the models should capture the
patterns observed in real data
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GRAPH ASSAYS
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Graph Assays —
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Frequency

el Ul hbadbbD.
: HMAJ\J\K\!’V\A&A&&&&

Isolates
Edges
(not in Wedges or Triangles)

Wedges (not in Triangles) Trlangles

Graph assays measure frequency of common patterns
= A.k.a. structural signatures, graphlets, etc.
= Fordirected graphs, just looking up thru 3-patterns yields rich information

=  Will also add attributes (e.g., degrees of neighbors, time dependencies, etc.) and other features to
the patterns

= Capture local interactions within the graph

=  Graph assays can be used for validation of generative model — the assays for the real
data and the generated data should match

= (Can also be used to monitor status of an evolving network, e.g., via hourly snapshots

= Difficulty: Counting patterns such as triangles can be prohibitively expensive (in time
and space) for large-scale graphs. Even linear time/space may be too much.
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Challenge of Triangle Counting —
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d; = degree of node i

w; = (c;%> = # wedges centered at node 7 v v

t; = # triangles containing node 7

3 x # triangles > . t;
© #wedges Y w;

c; = ;—‘ = clustering coefficient of node ¢

7

wedge
(i.e., triangle)

= clustering coefficient

C

1
Cqg = — E c; = mean for degree d
nq :
1eEVy

* Naive algorithm: Enumerate every wedge and check for

closure.
» Clever algorithm: Only consider wedges whose lowest

degree node is at the center. Example with 13 wedges
« But, even the clever algorithm still fails for large graphs if and 1 triangle

the number of wedges is large.
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Sampling Approach —
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Seshadhri, Pinar & Kolda, arXiv:1202-5230, 2012

9

= ¢ = clustering coefficient 108 o
. — U% CLonriaence | |
= Pr(random wedge is closed) 2 O 99.0% Confidence
. . a 10 =107 99.9% Confid 1
= p =total # wedges (calculated explicitly) g ooty onfidence
w 10
= t=total #triangles 5 5 i
5 107 1 \\W.38005 (e=107°)
0
. C= 3t/p g 104 !
. pzd _
= Hoeffding bound 10°} 380 (¢=10"",
2 —
' = 10 - : - - —
= ¢’ =sample mean for k random wedges 0 0.02 0.04 0.06 0.08 01
m P{lC'—ClZG}Sﬁ Error (g)
= t'=1/3cp \
’ 0.2F True Value
" Pllt-t][>1/3ep}<b S ~ Hoeffding Estimate
= For 6 =99.9% confidence and € = 1% error, % 0.18 — — — Error @ 99.9% Confidence |4
need only k = 38,005 samples LZ
.. £
* Number of samples (k) is independent of &
. w
graph size 2
I 1 1 1 1 1
0 0.5 1 15 2 2.5 3

Number of Samples

4
M
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Wedge sampling is more accurate pm.....
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m Wedge-sampling-13K  mDoulion-10  m Doulion-25

0.3
0.25
0.2

Relative error
o
|_\
Ol

VP QSRR RQCESLSTINI PO N @ SO @ @
FEFTELFE NS RKL S EE TP P FTF LG LS P
,1/00,1/0(‘4,00,1/0(\ 2 ?900 )?‘\)2‘.\, 9’0% S Q\O P LS Lo ,ng\'b$§{~$\\{s @
F P TF»PTTFLPLLSL LRSS

NIFEIRNER N ¥, ) T O F V@
> > > o F S LS S &
S &SS9 F

Doulion [Tsourakakis et al, KDD09]: Generate a smaller graph by removing each edge with
probability 1-p. Count the number of triangles in the original graph. Divide by p® to predict the

number of triangles in the original graph.
-
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...with big savings in runtime —
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= Enumeration m Wedge-sampling ® Doulion-10 m Doulion-25

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15

Times normalized with respect to the 10 time.
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Counting Directed Triangles —

MINNESOTA

= Multiple occurrences of the same wedge type causes
counting the same triangle multiple times.

= Algorithm
= Pick a wedge-type for the triangle type
= Compute the success rate
= t =success rate - w/ wedge multiplicity

Iﬂﬂm
AUV

/’\ /\ /’\

/'\/'\/\ 1211/’\/’\.&\./’\

() n 3
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Estimating triangles per degree
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1 0.5 0.4
* Estimated * Estimated 0 * Estimated
O True ‘ O True ' O True ]
0.8 1 0.4 ]
€ c <
Q Q Q
© (3] o A
= 06l8 5 0.3 5 0.25%
o o [e] \g
o % O o
[@)] o [@)] )
£ £ £
(7)) [7)] n
3 = 3
O O O
0.2 ¢ - 0.1
0.05
o, o

0

500 1000 1500 2000

0 50 100 150 200
Degree _ Degree Degre:e _
ca-CondMat cit-HepPh soc-Epinionsl

= Similar counting strategies apply to counting triangles per
degree

= But, we need to adjust the counts based of the number of
vertices with the same degree in the sampled wedge.
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‘Goal is Fast Graph Assays
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Frequency

THNINFITRIPF
o eoome A\ .’\ J\K\AK\AAAAAA&

Edges
(not in Wedges or Triangles) Wedges (not in Triangles) Trlangles

= Preliminary work on sampling-based approaches
= Clustering coefficient by degree needed to fit/validate BTER model

= MapReduce implementation in progress

= Also have MapReduce attributed subgraph isomorphism code,
which can be used for enumeration of infrequent patterns (and
validation of sampling method for smaller problems)
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EFFICIENT ALGORITHMS
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Enumerating triangles —
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= Core idea: check whether each
wedge is closed.

= Naive method \KQ
= Runs in roughly quadratic time
= Redundant work: each triangle is Example with 13 wedges
) and 1 triangle
reported 3 times

A— O AA
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Clever Enumeration
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= By imposing an ordering on the vertices (e.g., order by degree),
we can check only one wedge per triangle (the one centered on
the vertex with min. degree).

= This can be achieved by assigning each edge to its vertex with
lower degree.

= Discovered and rediscovered starting in 1985.

Total wedges: 24 \O

Wedges that need to be checked: 4
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Naive vs. Clever enumeration ——

MINNESOTA
Normalized wedge counts - Naive &« Clever
1000 -
0+ —— —— — — — —

" |n practice, clever approach is very effective in reducing number of
wedges that are checked

= However, it is surprisingly effective for many graphs.

= Recent work showed that the clever approach is linear in the
number of nodes [Berry et al, SAND2010-4474C]
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" Explicit Triangle Counting Work

MINNESOTA

Cleaner version of result is underway...

Run time of naive algorithm on CL graphs: N-I£[d %]

Run time of clever algorithm on CL graphs: M + N-(E[d#3])3
If degree distribution is power law with exponent y:

= |fy> 2, clever algorithm has faster run time than naive
= |fy>7/3, run time of clever algorithm is linear!

Running time related to heaviness of tail
= A well-studied property becomes useful algorithmically
= Experiments show that our formula is good

Tries to formalize intuition that when edges connect disparate
degrees, algorithm works well

Not clear, however, that CL is a good model for real-world
graphs...
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RESEARCH PLAN
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FEAST Driving Principles

MINNESOTA

Obijective: Measure, reproduce, and exploit quantifiable characteristics
of real-world social network and computer traffic graphs

® Hour 1
@

1. Graph Assays: Sampling-based techniques to "o
compute frequency of common patterns in
large-scale graphs

= Ex: Estimate number of each type of directed
triangle

. R
2. Generative Models: Reproduce
characteristics shown in the assays Clustering Coeffcient
%0

O ca-AstroPh
* BTER
+ CL

= Ex: Reproduce clustering coefficient per degree
(i.e., triangle behavior)

3. Efficient Algorithms: Take advantage of
structure of social networks

Avg. Clustering Coefficient

= Ex: Triangle enumeration is provably linear for 0
power law graphs with exponent < 7/3 Degree
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Validation Data - Cyber —
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= Sandia collects and stores network traffic data
for cyber network defense

= Metadata has been collected for 2 years
= 10GB/wk (compressed)
= Stored in Hadoop MapReduce cluster

= Raw pcap also available, but for shorter time
period
=  Example graph: client IPs with HTTP requests to
top-level domains
= Attributes: request time, URL, server response, etc.

= Single day graph has 20M edges and 50K vertices
(just top level domains)

= Larger graphs for longer time periods
= Validation

= Domain experts

=  Geographic IP information

= Lists of suspicious web sites
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Validation Data - MMORPG -

MINNESOTA

= MMORPG: Massively Multiplayer
Online Role Playing Games

= People assume characters in a fantasy
world

= On average, each player spends 22
hours a week

= The Psychology of MMORPG,
http://www.nickyee.com/~daedalus/gatew
ay demographics.html
= World-of-Warcraft has 10 million

subscribers as of Feb 2012

= http://investor.activision.com/releasedetail
.cfm?ReleaselD=647732

= MMORPG is $20 Billion industry
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MMORPG Dataset —

UNIVERSITY OF
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._ v — 4 month data
T . 100GB data size
Friendship network:
OMLIMNE (nodes, edges) i

7960447, 76671510 2%

SRS

9 month data
2.5TB data size
Trading Network:
(nodes, edges)
54287, 1045521695

23
CEY
*
37"

PoA

Partnership

‘,'ﬁgr:awa:‘n:‘}"h .

5 month data
200GB data size
Friendship Network:
(nodes, edges)
120690, 6596058

4 month data
160GB data size
Friendship network:
(nodes, edges)
954685, 392851843 Trade
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Graph Assays —

MINNESOTA

Frequency

el 0ol bbalhO.
: HmAAAAAAAAAz}.AAA

Isolates \
Edges
(not in Wedges or Triangles) Wedges (not in Triangles) Trlangles
= Graph Assays: Characterization of networks by counting occurrences of specified
patterns

= We will deploy graph assays for evolving networks to Sandia’s cybersecurity analysts as a tool for
situational awareness

= Context of local interactions must be considered for realistic graph models
= Directed and/or attributed graphs have a rich structure and hence a larger space of patterns to study

= Eventually, we will incorporate time dependencies directly into the patterns themselves resulting in
time-sensitive assays
= The big challenge is to understand how these various attributes are related to the
topology of the graph
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Sciences Perspective

MINNESOTA

Motivation for Assays from Social () i

= Structural signatures corresponds to graph assays

= Understanding graph assays gives the ability to quantitatively study
the human behavior in MMORPG networks

= Macro Analysis:

= Understand quantitatively the contributions of each structural
signature in human relationship networks, such as, friendship,
mentorship, housing, trade, etc.

=  Micro Analysis:
= Understand structural signatures of smaller communities

= Study the relationship of structural signatures across different
communities

Understanding structural signatures will enhance our
understanding of human behavior in network relationships
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Structural Signatures

MINNESOTA

Theory of Collective Action Theory of Homophily (Coleman, Theory of Balance (Smith-Lovin &
(Coleman, 1973) 1957) Cook, 2001)
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Understanding Evolving Community (7 i

Laboratories

B e h a vi o r UNIVERSITY OF

MINNESOTA

= Understanding evolving graph assays can tell us how
community behavior evolves over time

=)

4 R
E.qg., Increase Iin information exchange points and

reduction in overall information capacity
\ Y
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Graph Assay Tasks —

MINNESOTA

= Phase 1

= Task 1: (SNL) Adapt existing MapReduce software for subgraph
isomorphism for graph assays and install at UMN and Sandia

= Task 2: (UMN) Develop undirected, directed, time-dependent, and
attributed assays for MMORPG social networks

= Task 3: (SNL) Develop undirected, directed, time-dependent, and
attributed patterns for computer tracffic networks

= Task 4: (SNL) Theory explaining undirected and directed observations
= Phase 2
= Task 11: (SNL) Deploy assays in operational cyber security
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Fast Graph Assays —

MINNESOTA

= Major roadblock in using
assays is computational k ® hourd
challenge of enumerating ® Hour3
small subgraphs * fourtouen
= Likely reason they have not
received much attention until
noOwW
" Goal: Use sublinear random
sampling to develop fast -
algorithms for creating J <l ITITIN IR
sampling-based approaches
for assays

= Efficient assay computation
gives us a simple method for
tracking behavior of these
subgraph occurrences over
time
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‘Fast Graph Assay Tasks —

MINNESOTA

= Phasel
= Task 5: (SNL) Methods and theory for undirected patterns
= Task 6: (SNL) Methods and theory for directed patterns

= Phasell
= Task 12: (SNL) Methods/theory for time-dependent patterns
= Task 13: (SNL) Methods/theory for patterns with auxiliary information
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From Assays to Models —

MINNESOTA

= Most existing generative graph models have not been 10t |
carefully validated against real data 0 cit-HepPh

. _ . % ﬁ%@% * BTER

= As we discover properties from graph assays, we will 5 g 4o FF
formalize them as theoretical properties (“assay ' % ——
statements”) %

= Expressed asympotically as densities over certain subgraphs § 10°t W

= Example: social network graph on n nodes contains a union %
of O(n) dense ER subgraphs 1 §

L

= Thisis a principled approach for designing new o
models, validating them, and pinpointing precise +
deficiencies 10

= Scalability: Without resorting to a methodology that Degree
grows a network one node or edge at a time (barrier
to scalability), we intend to derive a fundamental
understanding that enables us to model evolving
networks

= We need generative models that add labels and
timestamps that make contextual sense as compared
to real-world data
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= Phasel
= Task 7: (SNL) Scalable generative model with directed edges
= Task 8: (SNL, sub UMN) Validate directed model on static network
snapshots
= Phase ll
= Task 9: (SNL) Evolving generative model, with directed edges
= Task 10: (SNL, sub UMN) Validate evolving model on evolving
networks
= Phase |l

= Task 14: (SNL) Capture time dependencies in scalable generative
model

= Task 15: (SNL, sub UMN) Validate time-dependencies in model
= Task 16: (SNL) Capture attributes in scalable generative model
= Task 17: (SNL, sub UMN) Validate attributes in model
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Sampling using Random Walks

MINNESOTA

= Deep math problem: How does one
correctly choose a small “random”
sample of a graph that reveals
information about its properties?

= We have already shown that by
tracking collision properties of a
sublinear number of short random
walks, we can detect bottlenecks in a
graph

= Need to build a theory of random
walks for evolving graphs
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‘Random Walk Tasks -

MINNESOTA

= Phase ll:
= Task 18: (SNL) Random-walk analysis for heavy-tailed graphs
= Task 19: (SNL) Random-walk analysis for evolving, heavy-tailed graphs
= Task 22: (SNL) Notion and algorithms based on random walks

= Phase lll

= Task 27: (SNL) Regularity lemma for social networks
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Exploiting Structure —

MINNESOTA

Heavy-tailed graphs

Social networks

Universe of
all sparse graphs

= Conjecture that finding min-conductance cuts may be poly-time solvable for
social graphs

= Even though community detection has received much attention, there is no
accepted objective function that captures what humans believe to be correct
in all cases

= Plan to develop first community detection method to feature graph assays as
key idea

=  Will consider whether the specific structure of social networks makes it easier
to find “large” near cliques efficiently

= We seek a type of regularity lemma for social networks
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Structure Tasks
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= Phase l:

= Task 21: (SNL) Prove certain patterns (4-cliques, directed patterns,
etc.) can be enumerated efficiently for social networks

= Phase ll

= Task 20: (SNL) Prove minimum-conductance is polynomial on social
networks

= Task 23: (SNL, sub UMN) Hypothesize and validate definition of

community that is relevant to social science and validated by surveys
on MMORPG participants.

= Phase lll

= Task 25: (SNL, sub UMN): Community-finding methods (not based on
random walks) that exploit structures detected in assays

= Task 26: (SNL) Near max-clique algorithms for social networks.
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BACK-UP SLIDES
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Similarity of CL to SKG for Graph 500 oy
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