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FEAST Team 

 Tammy Kolda (Sandia – CA) 

 Numerical algorithms, scientific computing 

 Ali Pinar (Sandia – CA)  

 Combinatorial scientific computing 

 Cindy Phillips (Sandia – NM)  

 Discrete mathematics  

 Jaideep Srivastava (UMN) 

 Social network analysis 

 Karthik Subbian (UMN grad student) 

 Social network analysis 

 

Not here today… 

 Jon Berry (Sandia – NM) 

 Graph algorithms 

 Todd Plantenga (Sandia – CA) 

 MapReduce for graph algorithms 

 C. “Sesh” Seshadhri (Sandia – CA) 

 Theoretical computer science 
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FEAST Driving Principles 

1. Graph Assays: Sampling-based techniques to 
compute frequency of common patterns in 
large-scale graphs 

 Ex: Estimate number of each type of directed 
triangle 

2. Generative Models:  Reproduce 
characteristics shown in the assays 

 Ex: Reproduce clustering coefficient per degree 
(i.e., triangle behavior) 

3. Efficient Algorithms: Take advantage of 
structure of social networks 

 Ex: Triangle enumeration is provably linear for 
power law graphs with exponent < 7/3 
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Objective: Measure, reproduce, and exploit quantifiable characteristics 

of real-world social network and computer traffic graphs 

 



GENERATIVE MODELS 
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Why Model Networks? 
 Insight into… 

 Generative processes and principles 

 Properties such as eigenvalue 
distribution, diameter, etc. 

 Changes over time 

 Enable sharing of realistic but  
non-sensitive data 

 Computer network traffic 

 Social networks 

 Statistics on graphs 

 Drive sampling strategies 

 Inform anomaly detection 

 Determine nodes/edge properties 

 Test graph algorithms  

 Various scales 

 Various degree distributions 

 Future versions of today’s networks 
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Desiderata for Undirected Graphs 

 Reproduce a variety of heavy tailed degree 
distributions 

 Power law, Pareto-lognormal, etc. 

 Can also consider joint degree distribution 

 Reproduce global and degree-wise clustering 
coefficients 

 Global clustering coefficient: C = probability that a 
random “wedge” is closed (to form a triangle) 

 Degree-wise clustering coefficient: Cd = probability that 
a random “wedge” centered at a node of degree d is 
closed 

 Consider also the 3-way degree distribution of triangles 

 Scalable 

 Fast generation, i.e., O(m log n) 

 Independent edge generation, i.e., no history 

 242 nodes and 246 edges for Graph 500 
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Most existing models 

fail here – cannot 

reproduce observed 

degree distribution. 

Challenging to have 

both high clustering 

coefficients and 

scalability! 



Stochastic Kronecker Graphs (SKG) is 
the leader in scalable generators 

 Generator for GRAPH500 Benchmark 
 Parallel edge generation 

 Only requires 5 parameters 

 SKG Inputs 
 L = # of levels → number of nodes is N = 2L 

 T = 2 x 2 generator matrix  (entries sum to 1)  

 M = # edges 

 Notes 
 Some edges may be duplicates or self-links and are 

ignored 

 Fitting to real data using “KronFit” takes between 7 
minutes for 20K nodes to 4 hours for 500K nodes 

 References 
 R-MAT: Chakrabarti , Zhan, & Faloutsos, SDM04  

 SKG: Leskovec et al., JMLR, 2010 

 

 3 issues with SKG…  
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SKG Edge Insert Procedure: 

• Choose a quadrant of the adjacency 

matrix proportional to entries of T 

• Repeat for a total of L times to land 

at a single entry of the matrix 

Graph 500 Parameters: 

• T = [0.57, 0.19, 0.19, 0.05] 
• L 2 {26, 29, 32, 26, 39, 42} 

• M = 16 ¢ 2L 



Issue #1: SKG degree distribution is 
not realistic (oscillations) 

Fixing the degree distribution 
 Thm: SKG degree distribution oscillates 

between lognormal and exponential tail 

 Fix: Choose fixed random noise value ¹i 
for each of the L levels 

Naïve addition of noise fails 
 Naïve: “To smooth out fluctuations in the 

degree distributions, we add some noise to 
the (a, b, c, d) values at each stage of the 
recursion and then renormalize (so that 
a+b+c+d = 1).” – CZF04 

 Compare naïve noise (blue) to our method 
(red) for Graph500 with L=26 
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Theoretical Prediction of Deg. Dist. Our Proposed Noisy SKG 

Our Fix (red) versus Naïve Noise  (blue); 

Hadoop implementation 

Graph500 

L= 16 

Graph500 

L= 16 Graph500 

L= 26 

Seshadhri, Pinar & Kolda, arXiv:1102.5046, 2011; short version in ICDM11 



Issue #2: SKG isolated vertices 
Issue #3: No community structure 

 Issue #2: SKG may have many 
isolated vertices  

 

 

 

 

 

 Issue #3: Low clustering 
coefficients  

 

 Noise addition (per Issue #1) 
doesn’t fix these issues 
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Graph 500 

Parameters: 

• T = [0.57, 0.19, 

0.19, 0.05] 
• M = 16 ¢ 2L 

L Isolated 

Nodes 

Avg. 

Degree 

26 51% 32 

29 57% 37 

32 62% 41 

36 67% 49 

39 71% 55 

42 74% 62 

Seshadhri, Pinar & Kolda, arXiv:1102.5046, 2011; short version in ICDM11 

Note SKG 

drops off 

too quickly. 



Capturing Degree Distribution: 
Chung-Lu Model 

 Premise: Probability of edge is 
proportional to degrees of endpoints 
 Pr(edgeij) = didj / 2M (M edges) 

 

 Scalable version: Independently pick 
end points of each edge proportional 
to degree 
 Requires only O(n) information 
 Need to be careful in implementation to 

avoid excessive isolates and/or duplicates 
 

 Only works if didj < 2M,  
but we think it can be fixed 
 

 Suggested alternative to SKG  
 Pinar, Seshadhri, Kolda, SDM12 

 

 Closely matches real data when 
clustering coefficient is not an issue 
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Aiello, Chung, Lu, Exp. Maths. 2001; Chung & Lu, PNAS, 2002 and Annals. Combinatorics, 2002. 



Matching the Clustering Coefficients 

 CL model has no mechanism to close wedges  

 Therefore does not get high clustering coefficients 

 Models that achieve high clustering coefficients require 

history to guide future edge insertions 

 How to get high clustering coefficient without history? 

 Random pairings cannot close wedges! 

 Must pre-group the nodes into affinity blocks 

 Our theory: CL graph with high clustering coefficient must 

have dense ER block at its core 

 Each affinity block is a near-clique 

 Simplifying assumption: Non-overlapping blocks 

 Implies blocks must comprise nodes of equal  

(or near-equal) degree 

 Can tune clustering coefficient to be appropriate for the 

degree by changing connectivity of the block 
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If nodes of different degrees 

are in the same block, then 

the high-degree nodes will 

have low clustering 

coefficients. 

4 

2 

3 

1 

Seshadhri, Kolda & Pinar, Phys. Rev. E, 2012 



BTER: Block Two-Level ER 

 Phase 1 
 Create near cliques via ER 

with a high probability such 
that phase 1 degrees do not 
exceed desired degrees 

 
 
 
 
 
 

 Phase 2 
 Fill in the remainder of the 

degree distribution using  
a CL approach 
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BTER: Block Two-Level Erdős-Rényi  
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Preprocessing: 

Create explicit 

affinity blocks of 

nodes with same  

(or nearly same) 

degree. The blocks 

are determined by 

the degree 

distribution. 

Phase 1:  

Erdős-Rényi graphs in 

each block. Connectivity 

based on observed Cd 

determines number of 

links within each block. 

Formula depends on 

lowest-degree node in 

block. 

Phase 2:  

CL (aka weighted ER) 

model on “excess” 

degree, creates 

connections across 

blocks. Can run in 

tandem to Phase 1 by 

worked with expected 

excess degree. 



Preprocessing: Determining Blocks 

 Input: Desired degree-distribution 

 Assume nodes sorted by degree, least to greatest 

 Ignore degree-1 vertices in this phase 

 Algorithm: 

 Group nodes in order 

 Bulk assign, if possible 

 Output: Compressed information about 
blocks 

 Size of each block 

  Starting index of each block 

 “Weight” of each block (depends on connectivity) 

 O(duniq) information, if compressed 

 Observe: If degree distribution is power law, 
then so is the distribution of the block sizes 

 Evocative of Dunbar’s number:  
Max block size = 100 for γ=2 
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Scalable BTER: Independent Edges 
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Choose phase 1 or 2? 

Create Phase 2 edge 

using CL model on 

“excess degree” 

Create Block 1 edge 

per ER model with 

connectivity ρ1 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 

Create Block K edge 

per ER model with 

connectivity ρK 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 

Choose block  

proportional to number 

of “samples” per block 

Requires O(n) data to determine 

the various probabilities, and can 
be compressed to ¼ O(duniq). 



Visualization of BTER Graph 
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Nodes colored by 

degree 

(darker=higher) 

 

Phase 1 = Blue 

Phase 2 = Green 

 

Image courtesy 

of Nurcan Durak. 



BTER versus CL and Forest Fire (FF) 
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Degree Distribution Clustering Coefficient 

BTER: Seshardhri, Kolda, Pinar, PRE 2012 

CL: Chung & Lu, PNAS 2002 

FF: Leskovec, Kleinberg, Faloutsos, KDD 2005 

soc-Epinions1 (sym): 76K nodes, 405K edges (downloaded from SNAP) 



BTER versus CL and Forest Fire (FF) 
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Degree Distribution Clustering Coefficient 

BTER: Seshardhri, Kolda, Pinar, PRE 2012 

CL: Chung & Lu, PNAS 2002 

FF: Leskovec, Kleinberg, Faloutsos, KDD 2005 

amazon0312 (sym): 400K nodes, 2.3M edges (downloaded from SNAP) 



BTER versus CL and Forest Fire (FF) 
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Degree Distribution Clustering Coefficient 

BTER: Seshardhri, Kolda, Pinar, PRE 2012 

CL: Chung & Lu, PNAS 2002 

FF: Leskovec, Kleinberg, Faloutsos, KDD 2005 

cit-HepPh (sym): 400K nodes, 2.3M edges (downloaded from SNAP) 



BTER versus CL and Forest Fire (FF) 
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Degree Distribution Clustering Coefficient 

BTER: Seshardhri, Kolda, Pinar, PRE 2012 

CL: Chung & Lu, PNAS 2002 

FF: Leskovec, Kleinberg, Faloutsos, KDD 2005 

wiki-Talk (sym): 2.3M nodes, 4.7M edges (downloaded from SNAP) 



Generative Models 

 BTER Model 
 Model based on theoretical observation  

 High clustering coefficient in a CL (random) graph 
is only possible if there is an ER subgraph 

 Affinity blocks = ER subgraphs. 

 Matches degree distribution and clustering 
coefficient 
 Superior to CL, SKG (aka RMAT), and FF  

 Hadoop MapReduce and C++/MPI 
implementation in progress 
 Will propose as replacement for RMAT/SKG in 

Graph 500 

 Even BTER model… 
 Current version is only for undirected simple 

graphs 
 Plan to add edge direction, attributes, and 

evolution 
 Goal is that the models should capture the 

patterns observed in real data 
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GRAPH ASSAYS 
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Graph Assays 

 Graph assays measure frequency of common patterns 
 A.k.a. structural signatures, graphlets, etc. 

 For directed graphs, just looking up thru 3-patterns yields rich information 

 Will also add attributes (e.g., degrees of neighbors, time dependencies, etc.) and other features to 
the patterns 

 Capture local interactions within the graph 

 Graph assays can be used for validation of generative model – the assays for the real 
data and the generated data should match 

 Can also be used to monitor status of an evolving network, e.g., via hourly snapshots 

 Difficulty: Counting patterns such as triangles can be prohibitively expensive (in time 
and space) for large-scale graphs. Even linear time/space may be too much. 
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Challenge of Triangle Counting 
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Example with 13 wedges  

and 1 triangle 

Closed 

wedge 

(i.e., triangle) 

Open wedge 

• Naïve algorithm: Enumerate every wedge and check for 
closure. 

• Clever algorithm: Only consider wedges whose lowest 
degree node is at the center. 

• But, even the clever algorithm still fails for large graphs if 
the number of wedges is large. 



Sampling Approach 

 c = clustering coefficient  
   = Pr(random wedge is closed) 

 p = total # wedges (calculated explicitly)  

 t = total # triangles  

 c = 3t/p 

 Hoeffding bound 

 c’ = sample mean for k random wedges 

 P{|c’ – c| ¸ ²} · δ 

 t’ = 1/3 c’¢p  

 P{|t’ – t| ¸ 1/3 ²¢p} · δ 

 For δ = 99.9% confidence and ² = 1% error,  
need only k = 38,005 samples 

 Number of samples (k) is independent of 
graph size 
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Seshadhri, Pinar & Kolda, arXiv:1202-5230, 2012 



Wedge sampling is more accurate 
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Wedge-sampling-13K Doulion-10 Doulion-25

Doulion [Tsourakakis et al, KDD09]:  Generate a smaller graph by removing each edge with 
probability 1-½. Count the number of triangles in the original graph. Divide by ½3 to predict the 

number of triangles in the original graph.     



…with big savings in runtime 
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Times normalized with respect to the IO time.  
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Counting Directed Triangles 

i ii iii iv v vi 

a 1 1 1 

b 3 

c 1 2 

d 1 1 1 

e 1 2 

f 1 1 1 

g 3 
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 Multiple occurrences of the same wedge type causes 
counting the same triangle multiple times.  

 Algorithm 
 Pick a wedge-type for the triangle type 

 Compute the success rate 

 t = success rate ¢ w / wedge multiplicity   



Estimating  triangles per degree  

 Similar counting strategies apply to counting triangles per 
degree 

 But, we need to adjust the counts based of the number of 
vertices with the same degree in the sampled wedge. 
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ca-CondMat cit-HepPh soc-Epinions1 



Goal is Fast Graph Assays 

 Preliminary work on sampling-based approaches 

 Clustering coefficient by degree needed to fit/validate BTER model 

 MapReduce implementation in progress 

 Also have MapReduce attributed subgraph isomorphism code, 
which can be used for enumeration of infrequent patterns (and 
validation of sampling method for smaller problems) 

 

7/18/2012 Kolda - FEAST - DARPA GRAPHS Kickoff  30 

F
re

q
u

e
n

c
y
 

Triangles Wedges (not in Triangles) 

Edges  

(not in Wedges or Triangles) 

Isolates 



EFFICIENT ALGORITHMS 
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Enumerating triangles 

 Core idea: check whether each  
wedge is closed.   

 Naïve method 

 Runs in roughly quadratic time 

 Redundant work: each triangle is 
reported 3 times  
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Example with 13 wedges  

and 1 triangle 



Clever Enumeration 
 By imposing an ordering on the vertices (e.g., order by degree), 

we can check only one wedge per triangle (the one centered on 
the vertex with min. degree). 

 This can be achieved by assigning each edge to its vertex with 
lower degree. 

 Discovered and rediscovered starting in 1985.  
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Total wedges: 24 

Wedges that need to be checked: 4 



Naïve vs. Clever enumeration 

0.1

1

10

100

1000

Normalized wedge counts  Naïve Clever
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 In practice, clever approach is very effective in reducing number of 
wedges that are checked 

 However, it is surprisingly effective for many graphs. 
 Recent work showed that the clever approach is linear in the 

number of nodes [Berry et al, SAND2010-4474C] 
 



Explicit Triangle Counting Work 

 Cleaner version of result is underway… 

 Run time of naïve algorithm on CL graphs: N¢E[di
2] 

 Run time of clever algorithm on CL graphs: M + N¢(E[di
4/3])3 

 If degree distribution is power law with exponent γ: 
 If γ > 2, clever algorithm has faster run time than naïve 

 If γ > 7/3, run time of clever algorithm is linear! 

 Running time related to heaviness of tail 
 A well-studied property becomes useful algorithmically 

 Experiments show that our formula is good 

 Tries to formalize intuition that when edges connect disparate 
degrees, algorithm works well 

 Not clear, however, that CL is a good model for real-world 
graphs… 

 

 7/18/2012 Kolda - FEAST - DARPA GRAPHS Kickoff  35 



RESEARCH PLAN 
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FEAST Driving Principles 

1. Graph Assays: Sampling-based techniques to 
compute frequency of common patterns in 
large-scale graphs 

 Ex: Estimate number of each type of directed 
triangle 

2. Generative Models:  Reproduce 
characteristics shown in the assays 

 Ex: Reproduce clustering coefficient per degree 
(i.e., triangle behavior) 

3. Efficient Algorithms: Take advantage of 
structure of social networks 

 Ex: Triangle enumeration is provably linear for 
power law graphs with exponent < 7/3 
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Objective: Measure, reproduce, and exploit quantifiable characteristics 

of real-world social network and computer traffic graphs 

 



Validation Data - Cyber 

 Sandia collects and stores network traffic data 
for cyber network defense 

 Metadata has been collected for 2 years 
 10GB/wk (compressed) 
 Stored in Hadoop MapReduce cluster 

 Raw pcap also available, but for shorter time 
period 

 Example graph: client IPs with HTTP requests to 
top-level domains 
 Attributes: request time, URL, server response, etc. 
 Single day graph has 20M edges and 50K vertices 

(just top level domains) 
 Larger graphs for longer time periods 

 Validation 
 Domain experts 
 Geographic IP information 
 Lists of suspicious web sites 
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Validation Data - MMORPG 

 MMORPG: Massively Multiplayer 
Online Role Playing Games 

 People assume characters in a fantasy 
world  

 On average, each player spends 22 
hours a week  
 The Psychology of MMORPG, 

http://www.nickyee.com/~daedalus/gatew
ay_demographics.html  

 World-of-Warcraft has 10 million 
subscribers as of Feb 2012 
 http://investor.activision.com/releasedetail

.cfm?ReleaseID=647732 

 MMORPG is $20 Billion industry  
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http://www.nickyee.com/~daedalus/gateway_demographics.html
http://www.nickyee.com/~daedalus/gateway_demographics.html
http://investor.activision.com/releasedetail.cfm?ReleaseID=647732
http://investor.activision.com/releasedetail.cfm?ReleaseID=647732


MMORPG Dataset 
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Partnership 

Trade Mail 

Instant messaging 

EQ2 Data Set 
4 month data 

100GB data size 

Friendship network: 

(nodes, edges) 

7960447, 76671510  

9 month data 

2.5TB data size 

Trading Network: 

(nodes, edges) 

54287, 1045521695  

5 month data 

200GB data size 

Friendship Network: 

(nodes, edges) 

120690, 6596058  

4 month data 

160GB data size 

Friendship network: 

(nodes, edges) 

954685, 392851843 



Graph Assays 

 Graph Assays: Characterization of networks by counting occurrences of specified 
patterns 
 We will deploy graph assays for evolving networks to Sandia’s cybersecurity analysts as a tool for 

situational awareness 

 Context of local interactions must be considered for realistic graph models 
 Directed and/or attributed graphs have a rich structure and hence a larger space of patterns to study 

 Eventually, we will incorporate time dependencies directly into the patterns themselves resulting in 
time-sensitive assays 

 The big challenge is to understand how these various attributes are related to the 
topology of the graph 
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Motivation for Assays from Social 
Sciences Perspective 

 Structural signatures corresponds to graph assays 

 Understanding graph assays gives the ability to quantitatively study 
the human behavior in MMORPG networks 

 Macro Analysis:  

 Understand quantitatively the contributions of each structural 
signature in human relationship networks, such as, friendship, 
mentorship, housing, trade, etc. 

 Micro Analysis:  

 Understand structural signatures of smaller communities 

 Study the relationship of structural signatures across different 
communities  
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Understanding structural signatures will enhance our 

understanding of human behavior in network relationships 



Structural Signatures 

Theory of Structural Holes (Burt, 

1992) 

Theory of Social Exchanges (Blau, 

1964) 
Theory of Cognitive Balance 

(Heider, 1958) 

Theory of Collective Action 

(Coleman, 1973) 
Theory of Homophily (Coleman, 

1957) 
Theory of Balance  (Smith-Lovin & 

Cook, 2001) 
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Understanding Evolving Community 
Behavior 

 Understanding evolving graph assays can tell us how 
community behavior evolves over time 

 

E.g., increase in information exchange points and 

reduction in overall information capacity 
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Graph Assay Tasks 

 Phase 1 
 Task 1: (SNL) Adapt existing MapReduce software for subgraph 

isomorphism for graph assays and install at UMN and Sandia 

 Task 2: (UMN) Develop undirected, directed, time-dependent, and 
attributed assays for MMORPG social networks 

 Task 3: (SNL) Develop undirected, directed, time-dependent, and 
attributed patterns for computer tracffic networks 

 Task 4: (SNL) Theory explaining undirected and directed observations 

 Phase 2 
 Task 11: (SNL) Deploy assays in operational cyber security 
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Fast Graph Assays 

 Major roadblock in using 
assays is computational 
challenge of enumerating 
small subgraphs 
 Likely reason they have not 

received much attention until 
now 

 Goal: Use sublinear random 
sampling to develop fast 
algorithms for creating 
sampling-based approaches 
for assays 

 Efficient assay computation 
gives us a simple method for 
tracking behavior of these 
subgraph occurrences over 
time 
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Fast Graph Assay Tasks 

 Phase I 
 Task 5: (SNL) Methods and theory for undirected patterns 

 Task 6: (SNL) Methods and theory for directed patterns 

 Phase II 
 Task 12: (SNL) Methods/theory for time-dependent patterns 

 Task 13: (SNL) Methods/theory for patterns with auxiliary information 
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From Assays to Models 

 Most existing generative graph models have not been 
carefully validated against real data 

 As we discover properties from graph assays, we will 
formalize them as theoretical properties (“assay 
statements”) 
 Expressed asympotically as densities over certain subgraphs 

 Example: social network graph on n nodes contains a union 
of O(n) dense ER subgraphs 

 This is a principled approach for designing new 
models, validating them, and pinpointing precise 
deficiencies 

 Scalability: Without resorting to a methodology that 
grows a network one node or edge at a time (barrier 
to scalability), we intend to derive a fundamental 
understanding that enables us to model evolving 
networks 

 We need generative models that add labels and 
timestamps that make contextual sense as compared 
to real-world data 
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Modeling Tasks 

 Phase I 
 Task 7: (SNL) Scalable generative model with directed edges 

 Task 8: (SNL, sub UMN) Validate directed model on static network 
snapshots 

 Phase II 
 Task 9: (SNL) Evolving generative model, with directed edges 

 Task 10: (SNL, sub UMN) Validate evolving model on evolving 
networks 

 Phase III 
 Task 14: (SNL) Capture time dependencies in scalable generative 

model 

 Task 15: (SNL, sub UMN) Validate time-dependencies in model 

 Task 16: (SNL) Capture attributes in scalable generative model 

 Task 17: (SNL, sub UMN) Validate attributes in model 
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Sampling using Random Walks 

 Deep math problem: How does one 
correctly choose a small “random” 
sample of a graph that reveals 
information about its properties? 

 We have already shown that by 
tracking collision properties of a 
sublinear number of short random 
walks, we can detect bottlenecks in a 
graph 

 Need to build a theory of random 
walks for evolving graphs 
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Random Walk Tasks 

 Phase II: 
 Task 18: (SNL) Random-walk analysis for heavy-tailed graphs 

 Task 19: (SNL) Random-walk analysis for evolving, heavy-tailed graphs 

 Task 22: (SNL) Notion and algorithms based on random walks 

 Phase III 
 Task 27: (SNL) Regularity lemma for social networks 
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Exploiting Structure 

 Conjecture that finding min-conductance cuts may be poly-time solvable for 
social graphs 

 Even though community detection has received much attention, there is no 
accepted objective function that captures what humans believe to be correct 
in all cases 

 Plan to develop first community detection method to feature graph assays as 
key idea 

 Will consider whether the specific structure of social networks makes it easier 
to find “large” near cliques efficiently 

 We seek a type of regularity lemma for social networks 
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Heavy-tailed graphs 

Social networks 



Structure Tasks 

 Phase I: 
 Task 21: (SNL) Prove certain patterns (4-cliques, directed patterns, 

etc.) can be enumerated efficiently for social networks 

 Phase II 
 Task 20: (SNL) Prove minimum-conductance is polynomial on social 

networks 

 Task 23: (SNL, sub UMN) Hypothesize and validate definition of 
community that is relevant to social science and validated by surveys 
on MMORPG participants. 

 Phase III 
 Task 25: (SNL, sub UMN): Community-finding methods (not based on 

random walks) that exploit structures detected in assays 

 Task 26: (SNL) Near max-clique algorithms for social networks. 
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BACK-UP SLIDES 
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Similarity of CL to SKG for Graph 500 

55 

Fit CL to the degree 

distribution produced by SKG 

for Graph 500 with L = 18 
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