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EIGER Description
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« Method of moments code
— Rao-Wilton-Glisson basis functions

* Object oriented design
— Written in Fortran 90

« Sub-cell slot and wire models

« Configured for massively parallel platforms
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%’Compression Algorithm

« Adaptive Cross Approximation (ACA)
— Bebendorf (2000), Zhao (2005)

 Basic Idea — some matrix blocks are
approximated by a lower rank matrix (without
forming the full matrix)
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Compression Algorithm

% Block Decomposition

e Meshed model is enclosed in an oct-tree,
equivalent to 1 level Fast Multipole Method

* The matrix is described as:

MOM _ blocks COM _ blocks
mom com
Z= YZ"+ > Z

MOM_Blocks — Moment method matrix blocks

COM_Blocks — Compressed matrix blo
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matrix Compression in EIGER

Block Decomposition

Meshed Object VFY 218

Interaction Boxes

Define a block

Unknowns that are in these interaction boxes can be compressed. «
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Compression Algorithm

Block Computation

* Once first row is obtained, maximum of row
Is found, that determines the next column,
process continues until:
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 Error contro

— Choice of blocks for compression
e proximity
— Error parameter




Solution Methods
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* Direct —demonstrated by John
Schaeffer(2007)

— Modified LU solver
 Lower Upper Triangular

* |terative (matrix vector product)
— GMRES

« Generalized Minimum Residual
— TFOMR

« Transpose Free Quasi-Minimal Residual
— Preconditioning




Parallelization
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* Blocks are split among the processors.

* For either MOM or COM matrix blocks:

Total blocks
Number of processors

Number of blocks =

processoi) ~—

* Note actual algorithm enforces:

— No processor can have more or less than one
block than any other processor.

— Processors have hoth MOM and COM blocks.
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}»‘ Example Problem - 1

e VFY 218
— 58383 unknowns

 Combined Field Integral formulation
— No preconditioner

« Compression tolerance 1.e-03

 Solution method
— TFOMR Solver tolerance 1.e-04
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Parallel Timing
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Parallel Timing
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Parallel Timing
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Memory Used
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* Original , full matrix
— 3.4 Gbytes

« Compression
— MOM matrix memory 52.5 Mbytes
— COM matrix memory 22.6 Mbytes
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}0’ Example Problem - 2

« Slot coupling problem

Thin Slots

Exterior Cavity
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i’, Example Problem - 2

Field Point

Interior View




Results
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* Field Results LU
—Ex  (-79.535, -4.247)
—Ey  (184.40, 20.565)
—~Ez  (-18.517, 4262)
* Field Results TFQMR (Diagonal
Preconditioning)
—Ex  (-79.525, -4.238)
—Ey  (184.38, 20.578)
~Ez  (-18.528, .4305)

Electric Field Components
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}’%alderon Preconditioning

* Preconditioning with the operator
— (Electric Field Integral Equation)

T%(J) = ‘i - KA(JT)

« Spectrum Is bounded
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y Multiplicative Calderon
’ Preconditioning

« Based on the Buffa-Christiansen(BC) basis
functions.

* Implemented by Francesco P. Andriulli,
Kristof Cools, Femke Olyslager, Eric
Michielssen

* The BC basis functions are div-conforming,
guasi-curl-conforming basis functions

— RWG basis functions defined on the barycentric
mesh
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iﬁ‘ Barycentric Mesh

6 times the triangles




Matrix Equation

(P" 27 Q 27 R)1- (P 27 Q) V"

ZB Matrix on barycentric mesh
\/_B RHS on barycentric mesh
| Unknowns on original mesh




Matrix Equation

>
(2 )1 (72 Q)

ﬁ Maps RWG space to the barycentric RWG

Maps curl-conforming RWG space to the div-
Q conforming barycentric RWG

:T Maps div-conforming RWG barycentric and div
and quasi —curl-conforming BC functions _«




f 'Calderon Preconditioner
} Implementation

« Construct barycentric mesh

« Construct matrices needed for the
solution

— Compression for matrix Z8

e |terative solution
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%alderon Preconditioner Implementation -

Status

 Barycentric mesh generator in place
— Basis function information

 Other projectors integrated into the
code.

* Testing continues
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} Conclusions/ Future Work

* Finish integration of the two techniques
described.

« Continue testing with focus on appropriate
parameters for compression.

* Consider multilevel compression algorithms.

* Implement an enhanced parallelization
strategy.

— Reordering of unknowns

— Block algorithm
* multilevel




