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Overview 

• EIGER description 

 

• Compression algorithm description 

 

• Compression implementation 

 

• Calderon preconditoner 

 

• Conclusions/ Future Work 



EIGER Description 

• Method of  moments code 
– Rao-Wilton-Glisson basis functions 

 

• Object oriented design 
– Written in Fortran 90 

 

• Sub-cell slot and wire models 

 

• Configured for massively parallel platforms 

 

 



Compression Algorithm 

• Adaptive Cross Approximation (ACA) 

– Bebendorf (2000), Zhao (2005) 

 

• Basic Idea – some matrix blocks are 

approximated by a lower rank matrix (without 

forming the full matrix) 
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Compression Algorithm 
Block Decomposition 

• Meshed model is enclosed in an oct-tree, 

equivalent to 1 level Fast Multipole Method 

 

• The matrix is described as:  
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MOM_Blocks – Moment method matrix blocks 

COM_Blocks – Compressed matrix blocks 



Matrix Compression in EIGER 
Block Decomposition 

Meshed Object 

Interaction Boxes 

Unknowns that are in these interaction boxes can be compressed. 

Define a block 

VFY 218 



Compression Algorithm 
Block Computation 

• Once first row is obtained, maximum of row 
is found, that determines the next column, 
process continues until: 

 

 

 

 

• Error control  
– Choice of blocks for compression 

• proximity 

– Error parameter 

 

 

)(~ p
pp Zvu



Solution Methods 

• Direct – demonstrated by John 
Schaeffer(2007) 
– Modified LU solver  

• Lower Upper Triangular 

 

• Iterative (matrix vector product) 
– GMRES 

• Generalized Minimum Residual  

– TFQMR 
• Transpose Free Quasi-Minimal Residual 

– Preconditioning 



Parallelization 

• Blocks are split among the processors. 

 

• For either MOM or COM matrix blocks: 

 

 

• Note actual algorithm enforces: 

– No processor can have more or less than one 
block than any other processor. 

– Processors have both MOM and COM blocks. 
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Example Problem - 1 

• VFY 218  
– 58383 unknowns 

 

• Combined Field Integral formulation 
– No preconditioner 

 

• Compression tolerance  1.e-03 

 

• Solution method 
– TFQMR Solver tolerance 1.e-04   



Results 

RCS – Radar Cross Section 



Parallel Timing 

0

100

200

300

400

500

600

700

800

900

1 21 41 61 81 101 121 141

S
o

lu
ti

o
n

 T
im

e 
(s

) 

Number of Processors 



Parallel Timing 

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

R
a

ti
o

 

Number of Processors 

Solve

Ideal



Parallel Timing 

0

200

400

600

800

1000

1200

1400

1600

1800

1 21 41 61 81 101 121 141

F
il

l 
T

im
e 

(s
) 

Number of Processors 



Parallel Timing 

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

R
a

ti
o

 

Number of Processors 

Compression Fill

Ideal



Memory Used 

• Original , full matrix 

– 3.4  Gbytes 

 

• Compression 

– MOM matrix memory 52.5 Mbytes 

– COM matrix memory 22.6 Mbytes 



Example Problem - 2 

• Slot coupling problem 

Exterior Cavity 

Interior Cavity 

Thin Slots 



Example Problem - 2 

Interior View 

Field Point 



Results 

• Field Results LU 

– Ex (-79.535, -4.247) 

– Ey (184.40, 20.565) 

– Ez (-18.517, 4262) 

• Field Results TFQMR (Diagonal 
Preconditioning) 

– Ex (-79.525, -4.238) 

– Ey (184.38, 20.578) 

– Ez (-18.528, .4305) 

 

 

 

 

Electric Field Components 



Calderon Preconditioning 

• Preconditioning with the operator  

– (Electric Field Integral Equation) 

 

 

 

• Spectrum is bounded 

 

 

 



Multiplicative Calderon 

Preconditioning 

• Based on the Buffa-Christiansen(BC) basis 
functions. 

 

• Implemented by Francesco P. Andriulli, 
Kristof Cools,  Femke Olyslager, Eric 
Michielssen 
 

• The BC basis functions are div-conforming, 
quasi-curl-conforming basis functions 
– RWG basis functions defined on the barycentric 

mesh 
 

 



Barycentric Mesh 

6 times the triangles 



Matrix Equation 

BZ

B
V

I

Matrix on barycentric mesh 

RHS on barycentric mesh 

Unknowns on original mesh 



Matrix Equation 

QR

TP

Maps RWG space to the barycentric RWG 

Maps div-conforming RWG barycentric and div 

and quasi –curl-conforming BC functions 

Maps curl-conforming RWG space to the div-

conforming barycentric RWG Q



Calderon Preconditioner 

Implementation 

• Construct barycentric mesh 

 

• Construct matrices needed for the 

solution 

– Compression for matrix ZB 

 

• Iterative solution 

 

 



Calderon Preconditioner Implementation - 

Status 

• Barycentric mesh generator in place 

– Basis function information 

 

• Other projectors integrated into the 

code. 

 

• Testing continues 



Conclusions/ Future Work 

 

• Finish integration of the two techniques 
described. 
 

• Continue testing with focus on appropriate 
parameters for compression. 
 

• Consider multilevel compression algorithms. 
 

• Implement an enhanced parallelization 
strategy. 
– Reordering of unknowns 
– Block algorithm 

• multilevel 

 
 


