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Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a !
Magnetic Island Coalescence Problem* (Incompressible)   !

Approx. Computational Time Scales:  
•  Incompressible or anelastic eq. state 

•  => infinite speed fast and slow magneto-sonic waves  
•  Ion Momentum Diffusion: 10-7 to 10-3 
•  Magnetic Flux Diffusion:  10-7 to 10-3   
   

 

•  Ion Momentum Advection: 10-4 to 10-2 
•  Alfven Wave                    : 10-4 to 10-2 
•  XMHD Whistler Wave              : 10-7 to 10-1 
•  Magnetic Island Sloshing: 100  
•  Magnetic Island Merging: 101 
 

[*Driven Island Coalescence Problem: Finn and Kaw 1977; Chacon and Knoll Phys. 2006] 



Multiple Time Scales 

MHD times scales difficult for explicit, operator-split, and semi-implicit 
integration 

•  Fast modes prohibit explicit simulation for long dynamical time-scales 
×  Stability restrictions imply small time steps: non-scalable with mesh resolution  
×  For long time integration accuracy becomes problematic 

•  Interacting time-scales make semi-implicit and operator-split methods 
challenging and fragile in terms of stability 

Stable long time scale integration can be enabled by implicit time stepping 
•  However must solve challenging linear system: Newton’s Method 

Solve Jpk = �F (xk) where J = �F/�x

xk+1 = xk + pk

Our approach is to solve using preconditioned Newton-Krylov methods 
•  Effective preconditioning is key to parallel scalability 



What must a preconditioner do? 

•  What must a preconditioner do? 
1.  Handle ill conditioning of system due to:  

Fast waves, advection, elliptic operators, … 
Multiphysics systems strongly couple mechanisms, producing multiple time- 
and length-scales 

2.  Must optimally scale with increasing: 
•  problem size 
•  processor count 

•  For incompressible MHD specifically 
1.  Pressure-Velocity coupling: incompressibility constraint  
2.  Alfven Wave: Velocity-Magnetics coupling 
3.  Material advection (flow velocity) 
4.  Dissipative operators (momentum, magnetics) 



Three Types of Preconditioning 

1. Domain Decomposition (Trilinos/Aztec & IFPack)  

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee) 

3. Approximate Block Factorization / Physics-based (Trilinos/Teko package)    

•  1 –level Additive Schwarz DD 
•  ILU(k)  Factorization on each processor   (with variable levels of overlap) 
•  High parallel efficiency, non-optimal algorithmic scalability  

Fully-coupled Algebraic Multilevel methods 
•  Consistent set of DOF at each node (e.g. stabilized FE) 
•  Uses block non-zero structure of Jacobian  
•  Aggregation techniques and coarsening rates can be set 
•  Jacobi, GS, ILU(k) as smoothers 
•  Can provide optimal algorithmic scalability 

•  Applies to mixed interpolation (FE), staggered (FV), physics compatible discretization 
approaches using segregated unknown blocking 
•  Applied to systems where coupled AMG is difficult or might fail 
•  Can provide optimal algorithmic scalability 



Block preconditioning: CFD example 
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Consider discretized Navier-Stokes equations 

Properties of block factorization 
1.  Important coupling in Schur-complement 
2.  Better targets for AMG → leveraging scalability 

Properties of approximate Schur-complement 
1.  “Nearly” replicates physical coupling 
2.  Invertible operators → good for AMG 

Fully Coupled Jacobian 
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Required operators: 
•                        → Multigrid 
•                        → PCD, LSC,  
                                SIMPLEC 
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Block Factorization 

• Coupling in Schur-complement 
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Discrete N-S Exact LDU Factorization Approx. LDU 

Brief Overview of Block Preconditioning Methods for  Navier-Stokes:  
(A Taxonomy based on Approximate Block Factorizations, JCP – 2008) 

Now use AMG type methods on sub-problems.  
  Momentum transient convection-diffusion:  

 

  Pressure – Poisson type: 

Precond. Type References 

Pres. Proj;   
1st Term 
Neumann Series  

Chorin(1967);Temam (1969); 
Perot (1993): Quateroni et. 
al. (2000) as solvers 

SIMPLEC Patankar et. al. (1980) as 
solvers; Pernice and Tocci 
(2001) as smothers/MG  

Pressure 
Convection / 
Diffusion 

Kay, Loghin, Wathan, 
Silvester, Elman (1999 - 
2006); Elman, Howle, S., 
Shuttleworth, Tuminaro 
(2003,2008) 
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Transient  Kelvin-Helmholtz: Re = 106 
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Transient  
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Incompressible MHD: 2D Vector Potential Formulation 

Magnetohydrodynamics (MHD) equations couple fluid flow to 
Maxwell’s equations 
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where B = ⇧⇥A, A = (0, 0, Az)

Incompressible flow: Primitive variable 
Magnetics: Vector potential in 2D 
Discretized using a stabilized finite element formulation 



Incompressible MHD: Discrete Formulation 
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Structure of discretized Incompressible MHD system is 

Matrices F and D are transient convection operators, C is stabilization matrix 
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Stabilized finite element method in residual form 



Nested Schur Complements 
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S = C �BF�1BT

P = D � Y F�1(I + BT S�1BF�1)Z

Block LU factorization gives  

•  3x3 system leads to nested Schur complements 
•  Nesting is independent of ordering (C -1 doesn’t exist!)  
•  How is P approximated? 
•  Chacon & Knoll explored compressible flow and 
incompressible flow using stream-function vorticity 



Try 3x3 System: SIMPLE Motivated Preconditioner 
Quite Drastic Approximation 
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Issues 
•  SIMPLEC Approximation has issues with large CFL 
•  Not scalable for fixed timesteps 



Two Split Preconditioners for MHD: Use a 
defect-correction approach  

1.  Avoids nested Schur complement 
2.  Split Magnetics-Velocity (MV) from Navier-Stokes (NS) 
3.  Corresponds to a “split-factorization” 

x̂ = SplitPrec-NS(J , b):
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Splitting for MHD 

Algorithm corresponds to an Approximate Block Factorization 
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•  Need to compute 

•  Requires two 2x2 solves 
•  Navier-Stokes operator well studied 
•  How to invert Magnetics-Velocity operator 

Question: Do we think it will work? 

M�1



Splitting for MHD 

Does splitting make a good preconditioner? 

1. Structurally small perturbation  

2. Favorable spectrum 
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Challenges of splitting: Requires action of two 2x2 inverses 
1.  Navier-Stokes system – Block preconditioners PCD, LSC, SIMPLEC 
2.  Magnetics-Velocity system 



Approximating Velocity/Magnetics Coupling: PA 
An Approximate Commutator Approach 
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Also motivates a discrete commuting condition 
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Approximating Velocity/Magnetics Coupling: PB 
A stiff wave analysis* of the 2x2 MV coupling 
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Where u0 = 0;
B0 = const.
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*Classical wave analysis texts; Knoll and Chacon et. al Stiff Wave paper (JCP 2004) 
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Linearization 



Approximating Velocity/Magnetics Coupling: PC 

 A simple Approximation for F in P 
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1st term Neumann Series (or Pressure Proj.) approximation for F;  



Brief Structure of ABF Iterative solves 

•  Outer solve: non-restarted GMRES 

•  ABF Preconditioning 

•  SIMPLEC [3x3]: Use SIMPLEC diagonal matrix approximation in both S, P  
•  Split I: [2x2] Velocity-Pressure (PCD); [2x2] Magnetics-Velocity (PI);  I = A, B, C 

•  Sub-block solves ML AMG V(1,1) 

•  Velocity-Pressure  
•  Momentum-  Fully-coupled AMG        NSA: ILU(2) 
•  Pressure Schur Complement-                SA: GS 

  
•  Magnetics-Velocity 

•  Momentum- Same as above 
•  Magnetics Schur Complement-             NSA: ILU(2) 



Hydromagnetic Kelvin-Helmholtz  
Re = 103, S= 103; MA = 1.5; CFL  ~5 

Take home: Split preconditioner scales algorithmically, 
more relevant for mixed discretizations; Need optimization 
of CPU time; Fully-coupled ML AMG does well.   

1 core 

1024 cores 1 core 
1024 cores 



Results: Island Coalescence 

Results details 
•  Lundquist number: 104 

•  Starting time right before reconnection event 
Results averaged over 45 uniform timesteps 

•  Run on 1, 4, 16, 64, 256, and 1024 processors 
(33,000 unks/core) 

Simulation on half domain 
•  Symmetry BC 
•  Perturbed Harris-Sheet 



MHD Weak Scaling: Transient Island Coalescence at S= 104 
Fixed Alfven CFL 

Take home: Split preconditioner scales algorithmically, 
more relevant for mixed discretizations; Need optimization 
of CPU time; Fully-coupled ML AMG does well.   



MHD Weak Scaling: Transient Island Coalescence at S= 104 
Fixed Time Step (Alfven CFLmax ~ 100)  

Take home: Split preconditioners scale reasonably, more 
relevant for mixed discretizations; Need optimization of 
split preconditioners; Fully-coupled ML AMG does well.  

1 core 1024 cores 



Conclusions 

•     
•  Demonstrated ABF preconditioners for primitive variable incompressible MHD 
•  3x3 block system has nested Schur complement structure 
•  ABF performance not optimized, however results are encouraging 
•  Uses operator splitting approach 

•  Separates fluid and magnetics couplings 
•  Preconditioner is (structurally) small perturbation of original operator 
•  Requires approximating inverse action of two 2x2 operators 
•  Weak scaling for fixed CFL, time-step (reasonable) 
•  Can be used for mixed and physics compatible discretizations 

•  Explored usage of SIMPLEC preconditioner 
•  Strong dependence on CFL number, some strange behavior in scaling at large 
time steps (fixed CFL – coarse mesh) 
 



Weak Scaling Uncoupled Aggregation Scheme:  
Time/iteration on BlueGene/P (Drift – Diffusion BJT: P. Lin) 

•  TFQMR: used to look at time/iteration of multilevel preconditioners. 
•  W-cyc time/iteration not doing well due to significant increase in work on coarse levels (not shown) 
•  Good scaled efficiency for large-scale problems on larger core counts for 31K Unknowns / core  
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3D B-Field Lagrange Multiplier Formulation (Divergence form) 

Initial Prototype  
MHD Generator  



Plasma Physics Studies: Plasmoid formation in magnetic reconnection 

Magnetic reconnection:  fundamental process whereby magnetic 
field topology is altered resulting in a rapid conversion of 
magnetic field energy into plasma energy and significant plasma 
transport. Mechanisms and time scales have been an open issue 
for last 50 years. 
 
Critical process in astrophysical and laboratory plasmas. 


