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Finite Element Methods for Interfaces in 
Fluid/Thermal Applications

• Boundary Fitted Meshes
– Supports wide variety of interfacial conditions accurately
– Requires boundary fitted mesh generation
– Not feasible for arbitrary topological evolution (ALE)

• Mesh quality degrades with evolution, phase breakup and merging are precluded.
• eXtended Finite Element Methods (XFEM)

– Dolbow et al. (2000), Belytchko et al. (2001)
– Successfully applied to numerous problems ranging from crack propagation to phase change to 

multiphase flow
– Supports weak conditions accurately, mixed and Dirichlet conditions are actively researched 

(Dolbow et al.)
– Avoids boundary fitted mesh generation
– Supports general topological evolution (subject to resolution requirements)

• Generalized Finite Element Methods (GFEM)
– Strouboulis et al. (2000)
– Combination of standard finite element and partition of unity enrichment

• Immersed Finite Element Methods
– Li et al. (2003), Ilinca and Hetu (2010)
– Supports selected jumps across material boundaries (discontinuous gradient or value)

• Conformal Decomposition Finite Element Method (CDFEM)
– Enrichment by adding nodes along interfaces



CDFEM Uses Ideas From XFEM, Level Set 
Methods, and ALE Moving Mesh

Base mesh Level Set Function CDFEM Mesh 
added dynamically 
at interface

Benefits: Meshed free surface allows for easy application of boundary conditions, 
discontinuous variables are straight forward, topological changes 
Drawbacks: Mass loss similar to diffuse interface methods, expensive, file bloat

•CDFEM shown convergent for steady flow, Noble et al, IJNMF, 2010
•Extension to moving boundary problems



Moving CDFEM

– How do we handle the moving interface?
– What do we do when nodes change sign?
– What space do we use for pressure, velocity and level set?

– Goals
• Try to recover moving mesh case for moving interface
• Try to preserve minima, maxima
• Smooth interface

– Proposal
• Prolongation: Set “old” value to value of nearest point on interface
• Dynamics: Use ALE style (u-dxdt) for advection term
• Allow velocity gradient and pressure jumps across interface
• Level set on sub-element mesh



CDFEM – Unconstrained Spaces for 
Stability and Robustness

Discrete Space Considerations in CDFEM
– Anecdotal evidence for space requirements

• Static, diffusive problems have shown 
optimal convergence rates using 
subelements

• Dynamic, advection problems have shown 
poorly controlled modes in pressure-velocity 
and level set fields

– New formulation shows stable behavior for all 
fields on cut mesh

– This allows for jumps in pressure across 
interfaces due to capillarity since two pressure 
fields are used

– Level set and velocity are continuous across 
interface, but gradients can be discontinuous

– This allows for jumps in velocity gradient across 
interfaces

– Finite element formulation is PSPG stabilized on 
piecewise linear triangles (2D) or tetrahedrals
(3D)

– Surface stabilization term included for problems 
with surface tension (Hysing …)

Discrete spaces used in this work
 Level set is PL on cut element
 Velocity is PL on cut element 

allowing gradient jump across 
interface

 Pressure is PL on cut element 
for each phase (separate PL 
field for each phase)



Formulation: Capillary Hydrodynamics

Navier - Stokes
– Incompressible, Newtonian

– Galerkin, Backward Euler, Moving mesh term

– PSPG stabilization

– SUPG stabilization
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Formulation: Interface Dynamics

Level Set Equation
– Advection equation

– Galerkin, Backward Euler

– SUPG stabilization

– Periodic renormalization
• Compute nearest distance to interface
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Models: Liquid-Air Interface

Capillary Force
– Same model used in ALE simulations

• Jump in stress due to interfacial tension
• Laplace-Beltrami implementation avoids second 

derivatives

Interface Stabilization
– Surface viscosity type stabilization

• Based on recent paper by Hysing
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Code to Code Comparisons for 2D Buoyant 
Drop: Two Test Problems

Hysing et al, “Quantitative benchmark computations of two-dimensional 
bubble dynamics, IJNMF, 2009
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•Important dimensionless groups are the Reynolds number 
and the Eotvos number, and property ratios for the two fluids

•Two test cases included
•The first results in a smooth drop
•The second has a fine trailing structure that must be 
captured



Code to Code Comparisons for 2D Buoyant 
Drop: Two Test Problems

Hysing et al, “Quantitative benchmark computations of two-dimensional 
bubble dynamics, IJNMF, 2009

Test 1 Diffuse level set CDFEM

•Test 1 has gives a smooth drop shape
•Density and viscosity ratios of 10, Re=35 and Eo=10
•Both CDFEM and a classic diffuse interface method do a good job agreeing 
with each other and the benchmark
•Results given for coarse mesh (h=1/40)



Code to Code Comparisons for 2D Buoyant 
Drop: Two Test Problems

Hysing et al, “Quantitative benchmark computations of two-dimensional 
bubble dynamics, IJNMF, 2009

CDFEM
Test 1

Test 1 shows good convergence with 
mesh refinement for center of mass, 
circularity and rise velocity metrics



Code to Code Comparisons for 2D Buoyant 
Drop: Two Test Problems

Hysing et al, “Quantitative benchmark computations of two-dimensional 
bubble dynamics, IJNMF, 2009

Test 2

Diffuse level set

CDFEM

•Test 2 has fine trailing structures that must be captured 
by the code
•Density ratio of 1000 and viscosity ratios of 100, Re=35 
and Eo=125
•Both CDFEM and a classic diffuse interface method do 
a reasonable job, but give disparate results
•Results given for coarse mesh (h=1/40)



Mesh refinement study: Constrained CDFEM

h=1/40 h=1/80 h=1/160

t=h/16

CDFEM with 
constrained 
pressure, 
velocity and 
level set



Constrained Velocity for Both Phases on 
h=1/40 Mesh

• Constraining velocity to be continuous across the interface creates a stable 
algorithm

• Smoothed jump in velocity occurs one row of elements in from the interface



Mesh Refinement Study: Rise Velocity

rise velocity
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Rise velocity is defined 
as velocity in gravity 
direction over the area of 
the bubble



Comparison to Hysing et al, 2009

t=0.6 t=1.2 t=2.2t=1.8

t=2.8 t=3.0t=2.6t=2.4

CDFEM with constrained 
pressure, velocity, and 
level set, h=1/160



2D Rayleigh-Taylor Instability

• Unstable stratification of 
heavy fluid over light fluid

• Problem similar to 
Rayleigh-Taylor instability 
from Smolianski (IJNMF, 
2005) but with a 2:1 
aspect ratio instead of a 
4:1

• Initial condition for the 
shape of the interface 
affects wave number and 
symmetry of instability

• Results for zero surface 
tension with fine mesh: 
h=1/80, dt=h/3

light yellow fluid:  
= 0.17,  =0.003

gravity

u=v=0

u=v=0

u=0u=0

heavy green fluid: 
= 1.2,  =0.003



2.254% (1.95493)
h=1/20; t=h/3

1.014% (1.97972)
h=1/40; t=h/3.0

0.89% (1.9822)
h=1/80; t=h/3.0

• Metric is maximum area loss in 
the first 4s (t=1.96, 2.6, 3.3, 4.0)

• Initial area is 2.0
• Convergence looks is higher than 

first order (constrained is lower)
• Filament breakage/topology 

change may be the issue
• Renormalize every 0.05s

0.145% (1.9971)
h=1/160; t=h/3.0

Rayleigh-Taylor instability with no surface tension
Unconstrained CDFEM, 1 pressure



Droplet-scale Experiment in Microfluidic Device

• Create uniformly sized droplets
 Flow Focusing Microchannel

• Understand flow field inside/around droplets
 Phantom high speed camera

• Understand liquid-liquid mass transfer
 Ocean Optics spectrophotometer

Droplet fluid
Continuous
Fluid

Orifice

Outlet

100 μm

Continuous
Fluid

h = 27 μm

Decreasing inner flow rate



Droplet Generator
Comparison with Experiment*

Droplet Fluid:
Dodecane
0.74 g/cm3

1.8 cSt
0.01 ml/hr

Continuous Fluid:
Water
1.0 g/cm3

1.0 cSt
0.5 ml/hr

Surface Tension:
52 mN/m

Dimensions:
2a = 200 microns
Wc = 200 microns
Lor = 110 microns
Wor = 120 microns 
Wout = 500 microns *Roberts, CC. et al. Comparison of monodisperse droplet 

generation in flow-focusing devices with hydrophilic and 
hydrophobic surfaces, Lab Chip, 2012, 12, 1540.



Droplet Generator (2D)
Comparison with Experiment

Experiment 2D CDFEM



Droplet Generator (2D)
Comparison with Experiment

Experiment 2D CDFEM



Droplet Generator (2D)
Droplet Formation

Droplet Fluid:
Dodecane
0.74 g/cm3

1.8 cSt
0.01 ml/hr

Continuous Fluid:
Water
1.0 g/cm3

1.0 cSt
0.5 ml/hr

Surface Tension:
52 mN/m

Dimensions:
2a = 200 microns
Wc = 200 microns
Lor = 110 microns
Wor = 120 microns 
Wout = 500 microns



Droplet Generator (2D)
Velocity Magnitude



Droplet Generator (3D)
Droplet Formation

h = 27 microns



Droplet Generator (3D) 
Droplet Formation



Mass Transfer Analysis Via Image 
Processing in Microfluidic Cell

•Coalescence affects mass transport
•Internal flows remix coalesced drops
•Depletion occurs near boundaries



Drop D = 0.90 x Channel D

Experimental image 
looking at in plane 
velocities

CDFEM movie looking 
at in plane velocities



Squished drop



Drop sliding down curved surface showing 
mesh refinement

30



Conclusions and Future Work

• An unconstrained CDFEM algorithm has been developed and verified 
on a published 2D benchmark problem from Hysing et al, 2009

• CDFEM has been 
shown to be 
convergent with mesh 
refinement for smooth 
problems and for 
problems with 
topological changes

• Robustness in 3D still 
and issue with 
unconstrained 
formulation for low Ca

Working towards modeling mass transport with coalescence in a 
microfluidic device and eventually full contactor simulations



Coupling LAMMPS to CDFEM:
Particulate Flow Applications

Jeremy Lechman, SNL


